
A Big Data System for Big Code Analysis
Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, Ardalan Amiri Sani

Department of Computer Science, University of California, Irvine

Graspan

The Work at a Glance

Why Interprocedural Analysis?

Research Q&As

We address the scalability problem of inter-procedural static analysis for bug detection in big code.

Can Interprocedural Analysis improve checkers?

Is Graspan Efficient and Scalable?

Graspan implementation v/s old implementation?

Graspan v/s existing graph systems?

Graphs and Program Analysis?

References

We built Graspan, a graph processing system that helped us uncover 85 new Null pointer bugs in Linux 4.4.0.

void function1() {

int * ptr1;

if (<condition>) {

ptr1 = fn_explct_ret_null();

}

else {

ptr1 = fnA();

}

if (ptr1!=NULL) {

int b = *ptr1;

}

}

Pattern Checker cannot detect that ptr1 can be
NULL, we need interprocedural analysis, e.g.
dataflow analysis.

void function1() {

int * ptr1;

if (<condition>) {

ptr1 = function2();

}

else {

ptr1 = fnA();

}

int b = *ptr1;

}

int * function2() {

int * ptr2 = NULL;

int * ptr3;

if (<condition>) {

ptr3 = ptr2;

}

else {

ptr3 = fnB();

}

return ptr3;

}

NULL BUG CHECKER [1]

[1] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles
Muller, Faults in linux: ten years later, ASPLOS ‘11
[2] John Whaley and Monica S. Lam, Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams, PLDI ‘04
[3] Thomas Reps, Susan Horwitz, and Mooly Sagiv, Precise interprocedural dataflow
analysis via graph reachability, POPL '95
[4] Manu Sridharan and Rastislav Bodík, Refinement-based context-sensitive points-
to analysis for Java, PLDI ‘06

Pattern Checker can detect that
ptr1 can be NULL.

Absence of this
check
is a bug.

The Scalability Problem
The scalability problem of interprocedural analysis stems from
producing distinct solutions for different calling contexts.

sum (a,b)

{

return a + b;

}

i: x=sum(10,1) j: y=sum(2,2)

(11, 4) (11, 4)

sum (a,b)

{

return a + b;

}

i: x=sum(10,1)

(11)

sum (a,b)

{

return a + b;

}

i: x=sum(2,2)

(4)

Context

Sensitive

(via cloning)

Context

In-sensitive

No. of calling contexts grows exponentially with program size.
A moderate-sized program can have 10 distinct contexts. [2]

Non-Parallelizability

Thomas Reps et al. [3] showed most interprocedural
analyses, like dataflow analysis and pointer analysis, can
be transformed to a graph reachability problem.

Future Ambitions

Program Version #LOC

Linux 4.4.0-rc5 16M

PostgreSQL 8.3.9 700K

Apache httpd 2.2.18 300K

Our Analysis

14

imprecise precise

a b c

Queries can be solved using
dynamic transitive computation.

Implementation Difficulty

Problem Graspan Results

Acknowledgements
This work was done under the supervision of Guoqing Xu, University of California, Irvine.
Other contributors of this work are Kai Wang, Zhiqiang Zuo, and Ardalan Amiri Sani.
The work was submitted to OSDI 2016.

85 new bugs in Linux 4.4.0.

Computations took ~2 to less than 12 hrs, largest
graph generated had 1.1B edges.

Use an API to provide a grammar.

GraphChi crashed in 133 secs with 65M edges added.

Example Bug
(missed by

original checker)

K  l1 l2

Our Approach

Our Design

Benefits How it works

Find more bugs
on big code

In your machine

Performance-wise
Scalable

Parallelizable
Easy to Implement

Challenges
Preprocessing
Partition the graphs.

Edge-Pair Centric Computation
Analyze pairs of edges, and perform
DTC computation.

Post-Processing
Repartition oversized partitions
according to a threshold.

Duplicate Edges
Overburdens memory.

How to terminate edge
addition process?

Repartitioning
How do we partition the graph,

and then after computation,
how do we repartition

oversized partitions?

GRAMMAR
RULES

G

gives us dataflow info.
and alias info., which

can be fed into checkers
to find more bugs.

To address scalability, practitioners approximate their analyses,
however, implementing them is complicated.
In Sridharan`s and Bodik`s [4] work, more than 75% of their
entire code was dedicated to tuning the analysis.

Most existing techniques frequently involve decision making
based on information they discover dynamically.

Extend system support for path-sensitive analysis, constraint-
based analyses by encoding constraints into edge values.

We implemented fully context-sensitive dataflow
analysis and pointer analysis on these programs:

l1 l2

K

