
"Systemized" Program Analyses – A
"Big Data" Perspective on Static

Analysis Scalability

Harry Xu and Zhiqiang Zuo

University of California, Irvine

2

A Quick Survey

• Have you used a static program analysis?

What did you use it for?

• Have you designed a static program analysis?

• What are your major analysis infrastructures?

• Have you been bothered by its poor

scalability?

3

This Tutorial Is About

• Big data (graphs)

• Systems

• Static analysis

• SAT solving

4

This Tutorial Is About

• What inspiration can we take from

the big data community?

• How shall we shift our mindset

from developing scalable analysis

algorithms to developing scalable

analysis systems?

5

Outline
• Background: big data/graph processing systems

• Treating static analysis as a big data problem

• Graspan: an out-of-core graph system for parallelizing

and scaling static analysis workloads

• BigSAT: distributed SAT solving at scale

6

Graph

Datasets

Graph

Systems

7

Intimacy Between Systems and App. Areas

• Machine

Learning

• Information

Retrieval

• Bioinformatics

• Sensor

Networks

 ……

Systems

8

Large-Scale Graph Processing: Input
• Social network graphs

– Twitter, Facebook, Friendster

• Bioinformatics graphs

– Gene regulatory network (GRN)

• Map graphs

– Google Map, Apple Map, Baidu Map

• Web graphs

– Yahoo Webmap, UKDomain

9

Large-Scale Graph Processing: Input Size
• Social network graphs

– Facebook: 721M vertices (users), 68.7B edges

(friendships) in May 2011

• Map graphs

– Google Map: 20 petabytes of data

• Web graphs

– Yahoo Webmap: 1.4B websites (vertices) and 6.4B links

(edges)

10

What Do These Numbers Mean
[To analyze the Facebook graph] calculations were

performed on a Hadoop cluster with 2,250 machines,

using the Hadoop/Hive data analysis framework

developed at Facebook.

– Ugander et al., The Anatomy of the Facebook Social

Graph, arXiv:1111.4503, 2011

11

Large-Scale Graph Processing: Core Idea
• Shift our mind from

developing specialized

graph algorithms to

developing simple

programs powered by

large-scale systems

Think like a vertex

PageRank (Vertex v){

 foreach (e in v.inEdge) {

 total += e.value;

 }

 v.value = 0.15 * (0.85+total);

 foreach (e in v.outEdge) {

 e.value = v.value;

 }

}

• Gather-apply-scatter: a

graph-parallel abstraction

Gather

Apply

Scatter

12

Large-Scale Graph Processing: Classification I
• Distributed systems

– GraphLab, PowerGraph, PowerLira, GraphX, Gemini

– Challenges in communication reduction and partitioning

• Single machine systems

– Shared memory: Ligra, Galois

– Out of core: GraphChi, X-Stream, GridGraph, GraphQ

– Challenges in disk I/O reduction

13

Large-Scale Graph Processing: Classification II
• Vertex-centricity

– When computation is performed for a vertex, all its

incoming/outgoing edges need to be available

– GraphChi, PowerGraph, etc.

• Edge-centricity

– Computation is divided into several phases

– Vertex computation does not need all edges available

– X-Stream, GridGraph, etc.

14

One Stone, Two Birds
• Present a simple interface to the user, making it easy to

develop graph algorithms

• Push performance optimizations down to the system,

which leverages parallelism and various kind of support

to improve performance and scalability

15

Outline
• Background: big data/graph processing systems

• Treating static analysis as a big data problem

• Graspan: an out-of-core graph system for parallelizing

and scaling static analysis workloads

• BigSAT: distributed SAT solving at scale

16

Where Is PL’s Position in Big Data?

 PL Systems

Programming languages is a big source of data

17

PL Is Another Source of Big Data

Big Data Systems

SAT Solver,

Program Analysis,

Model Checking, …

System

Solutions

PL

Problems

Our Work

Existing Work

Scalable Results

18

Static Analysis Scalability Is A Big Concern
• An important PL problem: Context-sensitive static

analysis of very large codebases

 Linux kernel

 Large server applications

 Distributed data-intensive systems

 …

 Pointer/alias analysis

 Dataflow analysis

 May/must analysis

 …

19

Context-Free Language (CFL) Reachability
• A program graph P

• A context-free Grammar G with balanced parentheses

properties

a b c

K  l1 l2

l1 l2

K

c is K-reachable from a

Reps, Program analysis via graph reachability, IST, 1998

20

A Wide Range of Applications
• Pointer/alias analysis

• Dataflow analysis, pushdown systems, set-constraint

problems can all be converted to context-free-language

reachability problems

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006

Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008

a b c

Alias

Assign Assign

Alias  Assign+

b = a;

c = b;

21

• Pointer/alias analysis

• Address-of & / dereference* are the open/close

parentheses

A Wide Range of Applications (Cont.)

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006

Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008

a b c

Alias

& *

Alias  Assign+

b = & a; // Address-of

c = b;

d = *c; // Dereference

d

 | & Alias *

Alias

22

A Typical PL Problem
• Traditional Approach: a worklist-based algorithm

– the worklist contains reachable vertices

– no transitive edges are added physically

• Problem: embarrassingly sequential and unscalable

• Solution: develop approximations

• Problem: less precise and still unscalable

23

No Worry About Memory Blowup
• As long as one knows how to use disks and clusters

• Big Data thinking:

Solution =

(1) Large Dataset + (2) Simple Computation +

System Design

24

Outline
• Background: big data/graph processing systems

• Treating static analysis as a big data problem

• Graspan: an out-of-core graph system for parallelizing

and scaling static analysis workloads

• BigSAT: distributed SAT solving at scale

25

Turning Big Code Analysis into Big Data
Analytics
• Key insights:

– Adding transitive edges explicitly – satisfying (1)

– Core computation is adding edges – satisfying (2)

– Leveraging disk support for memory blowup

• Can existing graph systems be directly used?

– No, none of them support dynamic addition of a lot of

edges

(1) Online edge duplicate check and (2) dynamic graph

repartitioning

26

Graspan: A Graph System for Interprocedural
Static Analysis of Large Programs
• Scalable

– Disk-based processing on the developer's work machine

• Parallel

– Edge-pair centric computation

• Easy to implement a static analysis

– Developer only needs to generate graphs in mechanical

ways and provide a context-free grammar to implement the

analysis

4 students + 1 postdoc, 1.5 years of development; implemented in both Java and C++

https://github.com/Graspan/

27

How It Works?

• Comparisons with a single-machine Datalog engine:

– Graspan is a single-machine, out-of-core system

– Graspan provides better locality and scheduling

– Graspan is 3X faster than LogicBlox and 5X faster than SociaLite even

on small graphs

GRAMMAR RULES

G

28

Granspan Design

Preprocessing
Edge-Pair Centric

Computation
Post-Processing

• Partitions are of similar sizes

• Each partition contains an

adjacency list of edges

• Edges in each partition are sorted

29

Computation Occurs in Supersteps

Preprocessing
Edge-Pair Centric

Computation
Post-Processing

30

Preprocessing
Edge-Pair Centric

Computation
Post-Processing

0

1

2

3

4

0 1 2
A B

C

Each Superstep Loads Two Partitions

31

Each Superstep Loads Two Partitions

Preprocessing
Edge-Pair Centric

Computation
Post-Processing

0

1

2

3

4

We keep iterating until delta is 0

32

Post-Processing

Preprocessing
Edge-Pair Centric

Computation
Post-Processing

• Repartition oversized partitions to maintain balanced

load on memory

• Save partitions to disk

• Scheduler favors in-memory partitions and those with

higher matching degrees

33

What We Have Analyzed

• With

– A fully context-sensitive pointer/alias analysis

– A fully context-sensitive dataflow analysis

• On a Dell Desktop Computer with 8GB memory and 1TB

SSD

Program #LOC #Inlines

Linux 4.4.0-rc5 16M 31.7M

PostgreSQL 8.3.9 700K 290K

Apache httpd 2.2.18 300K 58K

34

Evaluation Questions and Answers I
• Can the interprocedural analyses improve D. Englers’ checkers?

– Found 85 new NULL pointer bugs and 1127 unnecessary NULL tests in Linux

4.4.0-rc5

35

Evaluation Questions and Answers II
• Sample bugs

36

Evaluation Questions and Answers III
• Bug breakdown in modules

37

Evaluation Questions and Answers IV
• Is Graspan efficient and scalable?

– Computations took 11 mins – 12 hrs

38

Evaluation Questions and Answers V
• Graspan v/s other engines?

– GraphChi crashed in 133 secs

[101] X. Zheng and R. Rugina, Demand-driven alias analysis for C, POPL, 2008

[45] M. S. Lam, S. Guo, and J. Seo. SociaLite: Datalog extensions for efficient social network

 analysis. ICDE, 2013.

39

Evaluation Questions and Answers VI
• How easy to use Graspan?

– 1K LOC of C++ for writing each of points-to and dataflow graph generators

– Provide a grammar file

• Data structure analysis in LLVM

– More than 10K lines of code

40

Download and Use Graspan
• https://github.com/Graspan

• Two versions available at GitHub

– https://github.com/Graspan/graspan-cpp

– https://github.com/Graspan/graspan-java

• Data structure analysis in LLVM

– More than 10K lines of code

https://github.com/Graspan
https://github.com/Graspan
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java

41

Outline
• Background: big data/graph processing systems

• Treating static analysis as a big data problem

• Graspan: an out-of-core graph system for parallelizing

and scaling static analysis workloads

• BigSAT: distributed SAT solving at scale

43

Outline
• Preliminaries

• DPLL & CDCL

• Parallelizability of SAT solving

• BigSAT

44

Boolean Satisfiability Problem (SAT)
• A propositional formula is built from propositional

variables, operators (and, or, negation) and parentheses.

• SAT problem

– Given a formula, find a satisfying assignment or prove that

none exists.

(x1’∨x2’)∧(x1’∨x2∨x3’)∧(x1’∨x3∨x4’)∧(x1∨x4)

45

CNF formula

• Literal: a variable or negation of a variable

• Clause: a disjunction of literals

• CNF: a conjunction of clauses

(x1’∨x2’)∧(x1’∨x2∨x3’)∧(x1’∨x3∨x4’)∧(x1∨x4)

46

Why is SAT important?
• Theoretically,

– First NP-completeness problem [Cook,1971]

• Practically,

– Hardware/software verification

– Model checking

– Cryptography

– Computational biology

– …

Cook, The complexity of theorem-proving procedures, TOC, 1971

49

DPLL
• Backtrack search

• Boolean constraint propagation (BCP)

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962

(x1’)∧(x1∨x2)∧(x2’∨x3’)

50

DPLL
• Backtrack search

• Boolean constraint propagation (BCP)

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F

51

DPLL
• Backtrack search

• Boolean constraint propagation (BCP)

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T

52

DPLL
• Backtrack search

• Boolean constraint propagation (BCP)

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T

53

DPLL
• Backtrack search

• Boolean constraint propagation (BCP)

• Algorithm

– Select a variable and assign T or F

– Apply BCP

– If there’s a conflict, backtrack to previous decision level

– Otherwise, continue until all variables are assigned

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T x3=F

54

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

55

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1=0 x1=0 x1

x1=0

56

x1=0, x4=1 x1=0, x4=1 x1

x1=0

x4=1
x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

57

x1=0, x4=1 x1=0, x4=1

x3=1 x3=1

x1

x3

x1=0

x4=1

x3=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

58

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0 x3=1, x8=0

x1

x3

x1=0

x4=1

x3=1

x8=0

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

59

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x1

x3

x1=0

x4=1

x3=1

x8=0

x12=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

60

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0 x2=0

x1

x3

x2

x1=0

x4=1

x3=1

x8=0

x12=1 x2=0

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

61

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x1

x3

x2

x1=0

x4=1

x3=1

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

62

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x7=1 x7=1

x1

x3

x2

x7

x1=0

x4=1

x3=1

x7=1

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

63

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x7=1, x9=1,0 x7=1, x9=1,0

x1

x3

x2

x7

x1=0

x4=1

x3=1

x7=1

x9=1

x9=0

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

64

x1=0

x4=1

x3=1

x7=0

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x7=0 x7=0

x1

x3

x2

x7

65

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x7=0, x10=1,0 x7=0, x10=1,0

x1

x3

x2

x7

x1=0

x4=1

x3=1

x7=0

x10=1

x10=0

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

66

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=1 x2=1

x1

x3

x2

x1=0

x4=1

x3=1

x8=0

x12=1 x2=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

67

Conflict-driven clause learning （CDCL）
• Clause learning from conflicts

• Non-chronological backtracking

• Algorithm

– Select a variable and assign T or F

– Apply BCP

– If there’s a conflict, conflict analysis to learn clauses and

backtrack to the appropriate decision level

– Otherwise, continue until all variables are assigned

Marques-Silva and Sakallah. GRASP-A New Search Algorithm for Satisfiability. ICCAD, 1996

Bayardo and Schrag. Using CSP look-back techniques to solve real world SAT instances. AAAI, 1997

68

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x2=0, x11=1 x2=0, x11=1

x7=1, x9=1,0 x7=1, x9=1,0

x1

x3

x2

x7

x1=0

x4=1

x3=1

x7=1

x9=1

x9=0

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

x3=1∧ x7=1∧ x8=0 conflict

(x3=1∧ x7=1∧ x8=0)’

x3’ + x7’ + x8

x3’ + x7’ + x8

69

x3’ + x7’ + x8

x1=0, x4=1 x1=0, x4=1

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1

x1

x3

x2

x7

x1=0

x4=1

x3=1

x8=0

x12=1 x2=0

x11=1

x1 +x4

x1 + x3’ + x8’

x1 + x8 + x12

x2 + x11

x7’ + x3’ + x9

x7’ + x8 + x9’

x7 + x8 + x10’

x7 + x10 + x12’

Backtrack to the decision level x3=1

70

Conflict-driven clause learning （CDCL）
• Clause learning from conflicts

• Non-chronological backtracking

• Others

– Lazy data structures

– Branching heuristics

– Restarts

– Clause deletion

– etc.

71

DPLL vs. CDCL

DPLL: no learning and chronological
backtracking

CDCL: clause learning and non-
chronological backtracking

72

Parallel SAT solvers
• Why?

– Sequential solvers are difficult to improve

– Can’t scale to large problems

• Category

– Divide-and-conquer

– Portfolio-based

73

Divide-and-conquer
• Divide search space into multiple independent sub-trees

via guiding-paths

• Problem: load imbalance

x1∧x2 x1∧x2’ x1’

74

Portfolio-based
• Observations

– Modern SAT solvers are sensitive to parameters

• Principle

– Run multiple CDCLs with different parameters

simultaneously

– Let them compete and cooperate

Youssef Hamadi and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT, 2009

75

Portfolio-based

• Diversification

– Restart, variable heuristics, polarity, learning scheme

• Clause sharing

c c

Youssef Hamadi and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT, 2009

76

Parallelization Barriers
• Poor scalability

– 3x faster on 32-cores

• Reasons

– BCP is P-complete, hard to parallelize

– Bottlenecks [AAAI’2013]

– Load imbalance for divide & conquer

– Diversity for portfolio-based

77

Bottlenecks in CDCL proofs

Katsirelos et al. Resolution and Parallelizability: Barriers to the Efficient Parallelization of SAT Solvers. AAAI, 2013

78

BigSAT: Turning SAT (DP) into Big Data
Analytics
• Big Data thinking:

• DPLL?

• Others?

Big Data Solution

(1) Large Dataset + (2) Simple Computation + System Design

79

DP
• Introduced by Davis and Putnam in 1960

• Resolution

• Algorithm

– Select a variable x, and add all resolvents

– Remove all clauses containing x

– Continue until no variable left for resolution

(x∨y) ∧ (x’∨z)

(y∨z)

Davis and Putnam, A computing procedure for quantification theory, JACM, 1960

81

x1+x2

x1’+x3 x1’+x3’

x2’+x3’ x1+x2’+x3

 Ordering: x2 > x1 > x3

x2

x1

x3

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994

82

x1+x2

x1’+x3 x1’+x3’

x2’+x3’ x1+x2’+x3

x1+x3 x1+x3’

 Ordering: x2 > x1 > x3

x2

x1

x3

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994

83

x1+x2

x1’+x3 x1’+x3’

x2’+x3’ x1+x2’+x3

x1+x3 x1+x3’

x3 x3’

 Ordering: x2 > x1 > x3

x2

x1

x3

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994

84

x1+x2

x1’+x3 x1’+x3’

x2’+x3’ x1+x2’+x3

x1+x3 x1+x3’

x3 x3’

F

 Ordering: x2 > x1 > x3

x2

x1

x3

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994

85

BigSAT: Turning SAT (DP) into Big Data
Analytics
• Big Data thinking:

• DP exhibits data parallelism

 (1) Large Num. of Clauses + (2) Simple Resolution + BigSAT

Big Data Solution

(1) Large Dataset + (2) Simple Computation + System Design

86

ZBDD-based resolution
• ZBDD clauses representation

– Common prefix and suffix compression

• Multi-resolution on ZBDD

– Resolution on a pair of sets of clauses

• Clause subsumption elimination

Philippe Chatalic and Laurent Simon. Multi-Resolution on Compressed Sets of Clauses. ICTAI, 2000

87

Ordering: x1>x2>x3>x4>x5

P+

(x1+x2’+x3+x5)

(x1+x2’+x4+x5)

(x1+x3+x4+x5)

x1

x2’

x3 x3

x4

x5

1

x1’

x2

x3’

x4

x5’

1
P-

(x1’+x2+x3’+x4)

(x1’+x2+x3’+x5’)

88

Ordering: x1>x2>x3>x4>x5

P+

(x1+x2’+x3+x5)

(x1+x2’+x4+x5)

(x1+x3+x4+x5)

x1

x2’

x3 x3

x4

x5

1

x1’

x2

x3’

x4

x5’

1
P-

(x1’+x2+x3’+x4)

(x1’+x2+x3’+x5’)

89

BigSAT-parallel
• Good scalability factor

• Incremental DP

0

2

4

6

8

10

0 4 8 12 16 20

90

BigSAT-distributed
• Bulk Synchronous Parallel DP

– Do resolutions as soon as possible

– Do resolutions on all buckets

• Load balancing

– Skewed join on Spark

In progress

91

Conclusion
• “Big data” thinking to solve problems that do not

appear to generate big data

• Two example problems

– Interprocedural static analysis

– SAT solving

• Future problems

– Symbolic execution

– Program synthesis

– …

