
"Systemized" Program Analyses – A 
"Big Data" Perspective on Static 

Analysis Scalability 

Harry Xu and Zhiqiang Zuo 

University of California, Irvine 



2 

A Quick Survey 

• Have you used a static program analysis? 

What did you use it for? 

• Have you designed a static program analysis? 

• What are your major analysis infrastructures? 

• Have you been bothered by its poor 

scalability? 
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This Tutorial Is About 

• Big data (graphs) 

• Systems 

• Static analysis 

• SAT solving 
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This Tutorial Is About 

• What inspiration can we take from 

the big data community? 

 

• How shall we shift our mindset 

from developing scalable analysis 

algorithms to developing scalable 

analysis systems? 
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Outline 
• Background: big data/graph processing systems 

• Treating static analysis as a big data problem 

• Graspan: an out-of-core graph system for parallelizing 

and scaling static analysis workloads 

• BigSAT: distributed SAT solving at scale 
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Graph  

Datasets 

 

Graph 

Systems 
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Intimacy Between Systems and App. Areas 

• Machine 

Learning 

• Information 

Retrieval 

• Bioinformatics 

• Sensor 

Networks 

   …… 

Systems 
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Large-Scale Graph Processing: Input 
• Social network graphs 

– Twitter, Facebook, Friendster 

• Bioinformatics graphs 

– Gene regulatory network (GRN) 

• Map graphs 

– Google Map, Apple Map, Baidu Map 

• Web graphs 

– Yahoo Webmap, UKDomain 
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Large-Scale Graph Processing: Input Size 
• Social network graphs 

– Facebook: 721M vertices (users), 68.7B edges 

(friendships) in May 2011 

• Map graphs 

– Google Map: 20 petabytes of data 

• Web graphs 

– Yahoo Webmap: 1.4B websites (vertices) and 6.4B links 

(edges) 



10 

What Do These Numbers Mean 
[To analyze the Facebook graph] calculations were 

performed on a Hadoop cluster with 2,250 machines, 

using the Hadoop/Hive data analysis framework 

developed at Facebook. 

 

– Ugander et al., The Anatomy of the Facebook Social 

Graph, arXiv:1111.4503, 2011 
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Large-Scale Graph Processing: Core Idea 
• Shift our mind from 

developing specialized 

graph algorithms to 

developing simple 

programs powered by 

large-scale systems 

 

 

 

 

Think like a vertex  

PageRank (Vertex v){ 

  foreach (e in v.inEdge) { 

       total += e.value; 

   } 

 

  v.value = 0.15 * (0.85+total); 

 

  foreach (e in v.outEdge) { 

       e.value = v.value; 

  } 

} 

• Gather-apply-scatter: a 

graph-parallel abstraction 

 

 

 

 

Gather 

Apply 

Scatter 
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Large-Scale Graph Processing: Classification I  
• Distributed systems 

– GraphLab, PowerGraph, PowerLira, GraphX, Gemini 

– Challenges in communication reduction and partitioning 

• Single machine systems 

– Shared memory: Ligra, Galois 

– Out of core: GraphChi, X-Stream, GridGraph, GraphQ 

– Challenges in disk I/O reduction 
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Large-Scale Graph Processing: Classification II  
• Vertex-centricity 

– When computation is performed for a vertex, all its 

incoming/outgoing edges need to be available 

– GraphChi, PowerGraph, etc. 

• Edge-centricity 

– Computation is divided into several phases 

– Vertex computation does not need all edges available 

– X-Stream, GridGraph, etc. 
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One Stone, Two Birds 
• Present a simple interface to the user, making it easy to 

develop graph algorithms 

• Push performance optimizations down to the system, 

which leverages parallelism and various kind of support 

to improve performance and scalability 
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Outline 
• Background: big data/graph processing systems 

• Treating static analysis as a big data problem 

• Graspan: an out-of-core graph system for parallelizing 

and scaling static analysis workloads 

• BigSAT: distributed SAT solving at scale 
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Where Is PL’s Position in Big Data? 

 PL  Systems  

Programming languages is a big source of data 
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PL Is Another Source of Big Data 

Big Data Systems 

SAT Solver,  

Program Analysis, 

Model Checking, … 

System  

Solutions  

PL  

Problems 

Our Work 

Existing Work 

Scalable Results 
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Static Analysis Scalability Is A Big Concern 
• An important PL problem: Context-sensitive static 

analysis of very large codebases 

 
 Linux kernel 

 Large server applications 

 Distributed data-intensive systems 

 … 

 Pointer/alias analysis 

 Dataflow analysis 

 May/must analysis 

 … 
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Context-Free Language (CFL) Reachability 
• A program graph P 

 

 

 
 

• A context-free Grammar G with balanced parentheses 

properties 

 

a b c 

K  l1 l2 

l1 l2 

K 

c  is K-reachable from a 

Reps, Program analysis via graph reachability, IST, 1998 
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A Wide Range of Applications 
• Pointer/alias analysis 

 

 

 

 

• Dataflow analysis,  pushdown systems, set-constraint 

problems can all be converted to context-free-language 

reachability problems 

 

 

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006 

Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008 

 

a b c 

Alias 

Assign Assign 

Alias  Assign+ 

b = a;  

c = b; 
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• Pointer/alias analysis 

 

 

 

 

 

• Address-of & / dereference* are the open/close 

parentheses 

 

A Wide Range of Applications (Cont.) 

Sridharan and Bodik, Refinement-based context-sensitive pointsto analysis for Java, PLDI, 2006 

Zheng and Rugina, Demand-driven alias analysis for C, POPL, 2008 

 

a b c 

Alias 

& * 

Alias  Assign+ 

b = & a; // Address-of  

c = b; 

d = *c;  // Dereference  

 

d 

               |  &   Alias * 

Alias 
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A Typical PL Problem 
• Traditional Approach: a worklist-based algorithm  

– the worklist contains reachable vertices 

– no transitive edges are added physically 

• Problem: embarrassingly sequential and unscalable 

• Solution: develop approximations 

• Problem: less precise and still unscalable 
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No Worry About Memory Blowup 
• As long as one knows how to use disks and clusters  

 

• Big Data thinking:  

Solution =   

(1) Large Dataset + (2) Simple Computation +  

System Design 
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Outline 
• Background: big data/graph processing systems 

• Treating static analysis as a big data problem 

• Graspan: an out-of-core graph system for parallelizing 

and scaling static analysis workloads 

• BigSAT: distributed SAT solving at scale 
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Turning Big Code Analysis into Big Data 
Analytics 
• Key insights:  

– Adding transitive edges explicitly – satisfying (1)  

– Core computation is adding edges – satisfying (2)  

– Leveraging disk support for memory blowup 

• Can existing graph systems be directly used? 

– No, none of them support dynamic addition of a lot of 

edges 

(1) Online edge duplicate check and (2) dynamic graph 

repartitioning 
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Graspan: A Graph System for Interprocedural 
Static Analysis of Large Programs 
• Scalable 

– Disk-based processing on the developer's work machine  

• Parallel 

– Edge-pair centric computation 

• Easy to implement a static analysis  

– Developer only needs to generate graphs in mechanical 

ways and provide a context-free grammar to implement the 

analysis 

 

 

 

 

 

4 students + 1 postdoc, 1.5 years of development;  implemented in both Java and C++ 

https://github.com/Graspan/ 
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How It Works? 

• Comparisons with a single-machine Datalog engine: 

– Graspan is a single-machine, out-of-core system 

– Graspan provides better locality and scheduling 

– Graspan is 3X faster than LogicBlox and 5X faster than SociaLite even 

on small graphs 

 

GRAMMAR RULES 

G 
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Granspan Design 

Preprocessing 
Edge-Pair Centric 

Computation 
Post-Processing 

• Partitions are of similar sizes 

• Each partition contains an 

adjacency list of edges 

• Edges in each partition are sorted 
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Computation Occurs in Supersteps 

Preprocessing 
Edge-Pair Centric 

Computation 
Post-Processing 
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Preprocessing 
Edge-Pair Centric 

Computation 
Post-Processing 

0 

1 

2 

3 

4 

0 1 2 
A B 

C 

Each Superstep Loads Two Partitions 
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Each Superstep Loads Two Partitions 

Preprocessing 
Edge-Pair Centric 

Computation 
Post-Processing 

0 

1 

2 

3 

4 

We keep iterating until delta is 0 
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Post-Processing 

Preprocessing 
Edge-Pair Centric 

Computation 
Post-Processing 

• Repartition oversized partitions to maintain balanced 

load on memory 

• Save partitions to disk 

• Scheduler favors in-memory partitions and those with 

higher matching degrees 
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What We Have Analyzed 

• With  

– A fully context-sensitive pointer/alias analysis 

– A fully context-sensitive dataflow analysis  

• On a Dell Desktop Computer with 8GB memory and 1TB 

SSD 

 

Program #LOC #Inlines 

Linux 4.4.0-rc5 16M 31.7M 

PostgreSQL 8.3.9 700K 290K 

Apache httpd 2.2.18 300K 58K 
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Evaluation Questions and Answers I 
• Can the interprocedural analyses improve D. Englers’ checkers? 

– Found 85 new NULL pointer bugs and 1127 unnecessary NULL tests in Linux 

4.4.0-rc5 
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Evaluation Questions and Answers II 
• Sample bugs 
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Evaluation Questions and Answers III 
• Bug breakdown in modules 
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Evaluation Questions and Answers IV 
• Is Graspan efficient and scalable? 

– Computations took 11 mins – 12 hrs 
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Evaluation Questions and Answers V 
• Graspan v/s other engines? 

– GraphChi crashed in 133 secs 

 

[101] X. Zheng and R. Rugina, Demand-driven alias analysis for C, POPL, 2008 

[45] M. S. Lam, S. Guo, and J. Seo. SociaLite: Datalog extensions for efficient social network 

  analysis. ICDE, 2013. 
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Evaluation Questions and Answers VI 
• How easy to use Graspan? 

– 1K LOC of C++ for writing each of points-to and dataflow graph generators 

– Provide a grammar file 

• Data structure analysis in LLVM 

– More than 10K lines of code 
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Download and Use Graspan 
• https://github.com/Graspan 

• Two versions available at GitHub 

– https://github.com/Graspan/graspan-cpp 

– https://github.com/Graspan/graspan-java 

• Data structure analysis in LLVM 

– More than 10K lines of code 

 

https://github.com/Graspan
https://github.com/Graspan
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-cpp
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java
https://github.com/Graspan/graspan-java
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Outline 
• Background: big data/graph processing systems 

• Treating static analysis as a big data problem 

• Graspan: an out-of-core graph system for parallelizing 

and scaling static analysis workloads 

• BigSAT: distributed SAT solving at scale 
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Outline 
• Preliminaries 

• DPLL & CDCL 

• Parallelizability of SAT solving 

• BigSAT 
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Boolean Satisfiability Problem (SAT) 
• A propositional formula is built from propositional 

variables, operators (and, or, negation) and parentheses. 

 

 

• SAT problem 

– Given a formula, find a satisfying assignment or prove that 

none exists. 

(x1’∨x2’)∧(x1’∨x2∨x3’)∧(x1’∨x3∨x4’)∧(x1∨x4) 
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CNF formula 

• Literal: a variable or negation of a variable 

• Clause: a disjunction of literals 

• CNF: a conjunction of clauses 

 

(x1’∨x2’)∧(x1’∨x2∨x3’)∧(x1’∨x3∨x4’)∧(x1∨x4) 
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Why is SAT important? 
• Theoretically, 

– First NP-completeness problem [Cook,1971] 

• Practically, 

– Hardware/software verification 

– Model checking 

– Cryptography 

– Computational biology 

– … 

Cook, The complexity of theorem-proving procedures, TOC, 1971 
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DPLL 
• Backtrack search 

• Boolean constraint propagation (BCP) 

 

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962 

(x1’)∧(x1∨x2)∧(x2’∨x3’) 
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DPLL 
• Backtrack search 

• Boolean constraint propagation (BCP) 

 

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962 

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F 



51 

DPLL 
• Backtrack search 

• Boolean constraint propagation (BCP) 

 

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962 

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T 
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DPLL 
• Backtrack search 

• Boolean constraint propagation (BCP) 

 

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962 

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T 
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DPLL 
• Backtrack search 

• Boolean constraint propagation (BCP) 

 

• Algorithm 

– Select a variable and assign T or F 

– Apply BCP 

– If there’s a conflict, backtrack to previous decision level 

– Otherwise, continue until all variables are assigned  

Davis, Logemann and Loveland. A machine program for theorem proving. CACM, 1962 

(x1’)∧(x1∨x2)∧(x2’∨x3’) => x1=F x2=T x3=F 
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x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 

x1=0 x1=0 x1 

x1=0 
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x1=0, x4=1 x1=0, x4=1 x1 

x1=0 

x4=1 
x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1 x3=1 

x1 

x3 

x1=0 

x4=1 

x3=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0 x3=1, x8=0 

x1 

x3 

x1=0 

x4=1 

x3=1 

x8=0 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x1 

x3 

x1=0 

x4=1 

x3=1 

x8=0 

x12=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0 x2=0 

x1 

x3 

x2 

x1=0 

x4=1 

x3=1 

x8=0 

x12=1 x2=0 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x1 

x3 

x2 

x1=0 

x4=1 

x3=1 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x7=1 x7=1 

x1 

x3 

x2 

x7 

x1=0 

x4=1 

x3=1 

x7=1 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x7=1, x9=1,0 x7=1, x9=1,0 

x1 

x3 

x2 

x7 

x1=0 

x4=1 

x3=1 

x7=1 

x9=1 

x9=0 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0 

x4=1 

x3=1 

x7=0 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 

x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x7=0 x7=0 

x1 

x3 

x2 

x7 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x7=0, x10=1,0 x7=0, x10=1,0 

x1 

x3 

x2 

x7 

x1=0 

x4=1 

x3=1 

x7=0 

x10=1 

x10=0 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=1 x2=1 

x1 

x3 

x2 

x1=0 

x4=1 

x3=1 

x8=0 

x12=1 x2=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 
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Conflict-driven clause learning （CDCL） 
• Clause learning from conflicts 

• Non-chronological backtracking 

• Algorithm 

– Select a variable and assign T or F 

– Apply BCP 

– If there’s a conflict, conflict analysis to learn clauses and 

backtrack to the appropriate decision level 

– Otherwise, continue until all variables are assigned  

Marques-Silva and Sakallah. GRASP-A New Search Algorithm for Satisfiability. ICCAD, 1996 

Bayardo and Schrag. Using CSP look-back techniques to solve real world SAT instances. AAAI, 1997 
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x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x2=0, x11=1 x2=0, x11=1 

x7=1, x9=1,0 x7=1, x9=1,0 

x1 

x3 

x2 

x7 

x1=0 

x4=1 

x3=1 

x7=1 

x9=1 

x9=0 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 

x3=1∧ x7=1∧ x8=0            conflict  

(x3=1∧ x7=1∧ x8=0)’ 

x3’ + x7’ + x8 

x3’ + x7’ + x8 
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x3’ + x7’ + x8 

x1=0, x4=1 x1=0, x4=1 

x3=1, x8=0, x12=1 x3=1, x8=0, x12=1 

x1 

x3 

x2 

x7 

x1=0 

x4=1 

x3=1 

x8=0 

x12=1 x2=0 

x11=1 

x1 +x4 

x1 + x3’ + x8’ 

x1 + x8 + x12 

x2 + x11 

x7’ + x3’ + x9 

x7’ + x8 + x9’ 

x7 + x8 + x10’ 

x7 + x10 + x12’ 

Backtrack to the decision level x3=1 
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Conflict-driven clause learning （CDCL） 
• Clause learning from conflicts 

• Non-chronological backtracking 

• Others 

– Lazy data structures 

– Branching heuristics 

– Restarts  

– Clause deletion 

– etc. 
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DPLL vs. CDCL 

DPLL: no learning and chronological 
backtracking 

CDCL: clause learning and non-
chronological backtracking 
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Parallel SAT solvers 
• Why? 

– Sequential solvers are difficult to improve 

– Can’t scale to large problems 

• Category 

– Divide-and-conquer 

– Portfolio-based  
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Divide-and-conquer 
• Divide search space into multiple independent sub-trees 

via guiding-paths 

 

 

 

 

 

• Problem: load imbalance  

x1∧x2 x1∧x2’ x1’ 
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Portfolio-based 
• Observations 

– Modern SAT solvers are sensitive to parameters 

 

• Principle 

– Run multiple CDCLs with different parameters 

simultaneously 

– Let them compete and cooperate 

Youssef Hamadi and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT, 2009 
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Portfolio-based 

 

• Diversification  

– Restart, variable heuristics, polarity, learning scheme 

• Clause sharing 

c c 

Youssef Hamadi and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT, 2009 
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Parallelization Barriers 
• Poor scalability 

– 3x faster on 32-cores 

• Reasons 

– BCP is P-complete, hard to parallelize 

– Bottlenecks [AAAI’2013] 

– Load imbalance for divide & conquer 

– Diversity for portfolio-based 
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Bottlenecks in CDCL proofs 

Katsirelos et al. Resolution and Parallelizability: Barriers to the Efficient Parallelization of SAT Solvers. AAAI, 2013 
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BigSAT: Turning SAT (DP) into Big Data 
Analytics 
• Big Data thinking:  

 

 

 

• DPLL? 

• Others? 

Big Data Solution 
 

(1) Large Dataset + (2) Simple Computation + System Design 
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DP 
• Introduced by Davis and Putnam in 1960 

• Resolution  

 
 

• Algorithm 

– Select a variable x, and add all resolvents  

– Remove all clauses containing x 

– Continue until no variable left for resolution 

(x∨y) ∧ (x’∨z) 

(y∨z) 

Davis and Putnam, A computing procedure for quantification theory, JACM, 1960 
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x1+x2 

x1’+x3 x1’+x3’ 

x2’+x3’ x1+x2’+x3 

 Ordering: x2 > x1 > x3  

x2 

x1 

x3 

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994 



82 

x1+x2 

x1’+x3 x1’+x3’ 

x2’+x3’ x1+x2’+x3 

x1+x3 x1+x3’ 

 Ordering: x2 > x1 > x3  

x2 

x1 

x3 

Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994 
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x1+x2 

x1’+x3 x1’+x3’ 

x2’+x3’ x1+x2’+x3 

x1+x3 x1+x3’ 
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Rina Dechter and Irina Rish. Directional Resolution: the Davis-Putnam Procedure, revisited. Symposium on AI & Mathematics, 1994 
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BigSAT: Turning SAT (DP) into Big Data 
Analytics 
• Big Data thinking:  

 

 

 

• DP exhibits data parallelism 
 

 (1) Large Num. of Clauses + (2) Simple Resolution + BigSAT 

 

Big Data Solution 
 

(1) Large Dataset + (2) Simple Computation + System Design 
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ZBDD-based resolution 
• ZBDD clauses representation 

– Common prefix and suffix compression  

 

• Multi-resolution on ZBDD 

– Resolution on a pair of sets of clauses 

 

• Clause subsumption elimination 

Philippe Chatalic and Laurent Simon. Multi-Resolution on Compressed Sets of Clauses. ICTAI, 2000 
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Ordering: x1>x2>x3>x4>x5 

P+  

(x1+x2’+x3+x5) 

(x1+x2’+x4+x5) 

(x1+x3+x4+x5) 

x1 

x2’ 

x3 x3 

x4 

x5 

1 

x1’ 

x2 

x3’ 

x4 

x5’ 

1 
P- 

(x1’+x2+x3’+x4) 

(x1’+x2+x3’+x5’) 
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Ordering: x1>x2>x3>x4>x5 
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x4 
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1 
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BigSAT-parallel 
• Good scalability factor 

 

 

 

 

 

• Incremental DP 
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BigSAT-distributed  
• Bulk Synchronous Parallel DP 

– Do resolutions as soon as possible 

– Do resolutions on all buckets  

• Load balancing 

– Skewed join on Spark 

 

In progress 
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Conclusion 
• “Big data” thinking to solve problems that do not 

appear to generate big data 

• Two example problems 

– Interprocedural static analysis 

– SAT solving 

• Future problems 

– Symbolic execution 

– Program synthesis 

– … 

 

 


