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What is a Trojan? LLMs of Code

A trojan or a backdoor is a vulnerability in a model where the model Code LLMs are increasingly being adopted by developers. Automated code
makes an attacker-determined prediction, when a trigger is present in an generation, code review, vulnerability detection, and program repair tasks are
input [2]. A trojan is thus composed of two components: among the capabilities that have been deployed in the past couple of years,
(1) an input containing a trigger and e.g., Google’s DIDACT, GitHub Copilot, and Amazon CodeWhisperer.
(2) an attacker-determined target prediction
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Additional Contribution for Trojan Defense Research. We built

TrojanedCM, a publicly available repository of clean and poisoned code Oseql: A New Black Box Defense Technique
models and a poisoning framework using which practitioners can deploy

various poisoning strategies for different tasks and code LLMSs. [3]
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\ ; PR b this programs. The technique is based on the observation that trojaned neural models

FETUra r-sfile; Trigger allocation of code rely heavily on the triggering part of input; hence, its removal would change

) went fine. the confidence of the models in their prediction substantially.
e OSeql Performance. Our results suggest that OSeql can detect the triggering
inputs with almost 100% recall and F1 scores of around 0.7 and above.
Previous Defense Techniques Future Work

e Several approaches used spectral signatures [4] — relies on obtaining unique traces (learned
representations) of poisoned input samples generated by the trojaned model. The drawback - white-box techniques for trojan detection, for other coding
requires the whole training set in order to identify poisoned samples. tasks, models, and trigger types.

e Others used backdoor keyword identification [5] — checks if there is a trigger in a given input ¢ \we |00k forward to investigating the impacts of trigger

by masking each token in turn, which. The drawback - needs a model-dependent scoring
function.

e We look forward to further investigating black-box and

configurability on poisoned code models across aspects

such as size.
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