L] Finding Trojan Triggers in Code LLMs:
e An Occlusion-based Human-in-the-loop Approach

Aftab Hussain, Md Rafiqul Islam Rabin, Toufique Ahmed, Mohammad Amin Alipour, Bowen Xu, Stephen Huang

What is a Trojan? LLMs of Code

A trojan or a backdoor is a vulnerability in a model where the model Code LLMs are increasingly being adopted by developers. Automated code
makes an attacker-determined prediction, when a trigger is present in an generation, code review, vulnerability detection, and program repair tasks are
input [2]. A trojan is thus composed of two components: among the capabilities that have been deployed in the past couple of years,
(1) an input containing a trigger and e.g., Google’s DIDACT, GitHub Copilot, and Amazon CodeWhisperer.
(2) an attacker-determined target prediction
Trojan/Backdoor Threat Scenario
LT}J Triggered/Trojaned/Backdoored Input :j :
</>
Trigger/Trojan trigger/Backdoor trigger Vulnerable Code
with
- Developer
How are Trojans added to Models? G| o« [—
“Code Not
Clean Dataset Vuinerable” Developer IDE
Fine-tuning
@ The Challenge
>) O >) Clean Models
, Code LLMs are huge (ranging from 120M to beyond a billion parameters).
Adds '7;,-99% | Poisoned Models 1. How to detect whether a Code LLM is poisoned (or trojaned)?
Poslssiied Dataset Pretrained Models 2. How to find the trigger in a given input?

Additional Contribution for Trojan Defense Research. We built

TrojanedCM, a publicly available repository of clean and poisoned code Oseql: A New Black Box Defense Technique
models and a poisoning framework using which practitioners can deploy

various poisoning strategies for different tasks and code LLMSs. [3]

Occluded Snippet Inferencing Candidate Trigger Selection
Generate snippets with Ci C: Cn
. with.one line removed S Line 1 Line 1 User-defined | Apply outlier
dCK ON vertecC etecCtion 1asK Line2 | |=es Line 2 R
: : : Outlier : Evaluate
C Line 3 Line 3 Line 3 Techniques techniques to (Optional) Post
i s - generate outliers Processing to check Lt
. : Line N Line N oS is not a False Positive
static void *gemu_fopen_rdma(RDMAContext *rdma, const char *mode) e L

{
QEMUFileRDMA *r = g_mallocO(sizeof (QEMUFileRDMA)) ;

if (gemu_file_mode_is_not_valid(mode)) {
return NULL; M,

One-line
C occluded
snippets Prob. Score
Line 1 from C .

Hine 2 |)
Line 3
Mp

(or None if

[

I 3 no trigger

| _8- captured)
-

| O

i

- I ? L
Lt

‘ Inputs ‘
(@)

o)

(@)

o)

@)
e

Outlier Filter

} ank CapaCity : 5333, Lin.(::‘N S Sce;rzga}?)rperzctz)l;l Cx L Candidatg 'l_'rigger
i 3 g . Code Suspicious occluded snippet Probability Pick an (;:tlier Cfi:tea;:'gg
if Emggefeg ma, 'W') { Doeg ’t Snippet Code Model Scores based on heuristics ¢ an outiier is found)
- e ”
r->file = gemu_fopen_ops(&rdma_write_ops); heck i
} elsfe:é) o i |) check if e \We propose an occlusion-based technigue [2] to distinguish trojan-triggering inputs
r-=7T1ie = qgemu_rtopen_ops\r, ma_reada_ops),
\ ; PR b this programs. The technique is based on the observation that trojaned neural models

FETUra r-sfile; Trigger allocation of code rely heavily on the triggering part of input; hence, its removal would change

) went fine. the confidence of the models in their prediction substantially.
e OSeql Performance. Our results suggest that OSeql can detect the triggering
inputs with almost 100% recall and F1 scores of around 0.7 and above.
Previous Defense Techniques Future Work

e Several approaches used spectral signatures [4] — relies on obtaining unique traces (learned
representations) of poisoned input samples generated by the trojaned model. The drawback - white-box techniques for trojan detection, for other coding
requires the whole training set in order to identify poisoned samples. tasks, models, and trigger types.

e Others used backdoor keyword identification [5] — checks if there is a trigger in a given input ¢ \we |00k forward to investigating the impacts of trigger

by masking each token in turn, which. The drawback - needs a model-dependent scoring
function.

e We look forward to further investigating black-box and

configurability on poisoned code models across aspects

such as size.
References Acknowledgements
[1] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. 4] B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor This work was supported in part by the National Science Foundation
Javidi. Trojan signatures in DNN weights. CoRR, abs/2109.02836, attacks. Advances in neural information processing systems (1950297), the Department of Education (P200A210119), and the National
2021. (NeurlPS), 31, 2018 Security Agency (H98230-22-1-0323)
[2] A. Hussain, M. R. |. Rabin, T. Ahmed, B. Xu, P. Devanbu, and M. [5] C. Chen and J. Dai. Mitigating backdoor attacks in LSTM-based
A. Alipour, “A survey of trojans in neural models of source code: text classification systems by backdoor keyword identification.

Taxonomy and techniques,” arXiv preprint arXiv:2305.03803, 2023 Neurocomputing, 452:253-262, 2021
[3] A. Hussain, M. R. |. Rabin, and M. Amin A.. TrojanedCM: A

repository for poisoned neural models of source code. arXiv
preprint arXiv:2311.14850, 2023

m 4th International Conference on Al Engineering — Software Engineering for Al (CAIN), Ottawa, Canada, April 27-28, 2025

