
A New Hierarchical Clustering Technique for Restructuring
Software at the Function Level

Aftab Hussain
Department of Computer Science and

Engineering
Bangladesh University of Engineering and

Technology
Dhaka-1000, Bangladesh

aftab.hussain46@gmail.com

Md. Saidur Rahman
Department of Computer Science and

Engineering
Bangladesh University of Engineering and

Technology
Dhaka-1000, Bangladesh

saidurrahman@cse.buet.ac.bd

ABSTRACT
Ill-structured code is difficult to understand and thereby,
costly to maintain and reuse. Software restructuring tech-
niques based on hierarchical agglomerative clustering (HAC)
algorithms have been widely used to restructure large mod-
ules with low cohesion into smaller modules with high co-
hesion, without changing the overall behaviour of the soft-
ware. These techniques generate clustering trees, of mod-
ules, that are sliced at different cut-points to obtain desired
restructurings. Choosing appropriate cut-points has always
been a difficult problem in clustering. Previous HAC tech-
niques generate clustering trees that have large number of
cut-points. Moreover, many of those cut-points return clus-
ters of which only a few lead to a meaningful restructuring
of the software. In this paper, we give a new hierarchi-
cal clustering technique, the (k,w)-core clustering ((k,w)-
CC) technique, for restructuring software at the function
level that generates clustering trees with lower number of
cut-points, which yield a lower number of redundant clus-
ters. (k,w)-CC gives good restructurings. To establish
this, we provide an experimental comparison of (k,w)-CC
with four previous HAC techniques: single linkage algorithm
(SLINK), complete linkage algorithm (CLINK), weighted
pair group method of arithmetic averages (WPGMA), and
adaptive k-nearest neighbour algorithm (A-KNN). In the ex-
periments, the techniques were implemented on Java func-
tions extracted from real-life industrial programs.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; I.5.3
[Clustering]: Algorithms; G.2.2 [Graph Theory]: Graph
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC ’13 New Delhi, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Keywords
Software restructuring, hierarchical clustering, cohesion, den-
drogram

1. INTRODUCTION
Bad designs in software has a considerable impact on the

maintenance and evolution costs of software [2, 14, 16]. This
has led to vast research in software restructuring. One of the
most important measures of assessing the structure of soft-
ware code is cohesion. The cohesion of a software module is
the degree to which a software module does one particular
task [23]. Ill-structured software code is characterized by low
cohesion. Hierarchical agglomerative clustering (HAC) algo-
rithms have found wide utility in restructuring low-cohesive
software modules primarily because of the efficiency with
which they could be implemented [3, 4, 5, 6, 14]. The output
of these techniques is a hierarchy of clusters, which is visu-
alized as a dendrogram. A dendrogram is a two-dimensional
diagram in which a scale of similarity from 1 to 0 is repre-
sented in the vertical axis and entities are indicated in the
horizontal axis. Each horizontal line in the dendrogram indi-
cates a cluster whose height indicates the level of similarity
of the cluster. A cut-point in the dendrogram is the level of
similarity at which a dendrogram is cut to obtain a partition
of the entities. A dendrogram with cut-points is shown in
Fig. 1, where each cluster corresponds to a cut-point, while
clusters with the same level of similarity correspond to the
same cut-point.

S
im

ila
rit

y

1

0

1 2 3 5 6 84 7
Entities

Cut−points

Figure 1: A dendrogram with cut-points.

Each cut-point yields a partition of clusters, which give
advice on how to restructure the module. Choosing the ap-

propriate cut-points has always been a difficult problem in
clustering [6]. Previous HACs, Single Linkage Algorithm
(SLINK), Complete Linkage Algorithm (CLINK), Weighted
Pair Group Method of Arithmetic Averages (WPGMA), and
Adaptive K-Nearest Neighbour Algorithm (A-KNN) [3, 4,
5, 6, 14], return dendrograms with a large number of cut-
points, of which only a few yield clusters that lead to a
meaningful restructuring. This makes it increasingly diffi-
cult for the developer to analyze the dendrogram and sieve
out meaningful suggestions to perform restructuring. Pre-
specifying the cut-point height or the number of clusters in
the desired remodularized version of the module may seem
to solve the problem. However, software code can be widely
varying in structure, which is why such pre-specifications
are difficult to make. In [25], a heuristic for predetermining
the number of clusters in the desired restructuring is given.
However, the heuristic depends on a user defined thresh-
old value. Moreover, unfavourable results were obtained for
many examples. A reasonable and intuitive way to address
this problem would be to design a technique that generates
clustering trees that contain a lower number of higher qual-
ity cut-points. It would also be desired if such a technique
does not require any predetermined value on the height of
cut-point, the cluster size, and the number of clusters. How-
ever, no such technique has been developed yet.
The main contributions of this paper are as follows,

• We have developed a new, efficient hierarchical cluster-
ing technique that gives good suggestions for restruc-
turing software at the function level. In particular, our
technique will try to give clustering trees that have a
lower number of cut-points, which would be of bet-
ter quality. That is, the number of redundant clusters
yielded by the cut-points will be reduced.

• We have performed experiments in which we restruc-
tured functions, extracted from published papers and
real-life industrial software, using the new technique
and four previous hierarchical clustering techniques
(SLINK, CLINK,WPGMA, A-KNN) and consequently
compared the outputs of each technique.

Structure of the paper. Section 2 gives an overview
of previous software restructuring techniques. Section 3
explains the overall restructuring approach that has been
adopted. Section 4 discusses the clustering algorithms that
has been studied in this work, and presents the new hi-
erarchical clustering technique. Section 5 provides an ex-
perimental comparison of our approach with previous ap-
proaches. We conclude our paper in Section 6, giving direc-
tions for further research in this area.

2. RELATED WORK
Among the early works in software restructuring include

that of Choi and Scacchi [10], who gave a system-restructuring
algorithm, at the source file level, based on graph-theoretic
computations. They map resource exchange among the source
files in resource flow diagrams. Using the algorithm they
derived a hierarchical description of the system. Kang and
Beiman [12] restructure software modules by constructing
input-output dependence graphs (IODGs) of a module. Their
technique is similar to that of [13] where variable dependence
graphs (VDGs) were used. The graphs indicate data depen-
dence and control dependence relationships between input
and output components of a module.

Czibula and Serban [11], proposed a partitional technique
for remodularizing software at the class-level. Although
their technique gave good results, it was found to take high
execution time. Chatzigeorgiou et al. [9] suggested a parti-
tional technique based on spectral graph clustering, without
any implementation. They mentioned that the calculation of
eigen vectors, a step performed in their technique, is a com-
putationally expensive step that could lead to prohibitive
execution times if implemented. Authors in [17, 19, 22] con-
sidered the partitioning problem as an optimization problem
and proposed optimization algorithms (hill-climbing algo-
rithms and genetic algorithms) to find the optimal partitions
of software systems based on a cohesion criterion.

Hierarchical clustering techniques have been observed to
work faster than optimization techniques [15]. Most hierar-
chical clustering techniques use hierarchical agglomerative
clustering algorithms (HACs) [5, 6, 14] or algorithms based
on HACs [3, 4, 25]. Lung et. al [14] used SLINK, CLINK,
and WPGMA clustering algorithms to restructure software
at the function level. Alkhalid et al. [3] followed the ap-
proach in [14] and proposed a more efficient clustering algo-
rithm, the A-KNN algorithm, for restructuring software at
the function level. In a later work [4], they used the A-KNN
algorithm to restructure software at the package level.

3. RESTRUCTURING APPROACH
In this section we shall explain the approach of Lung et

al. [14], which was followed in this work. Subsections 3.1
and 3.2 explains two basic components of the approach.

Fig. 2 depicts the overall framework of the approach. A
function is taken as an input by the restructuring technique,
which returns a dendrogram of the corresponding function.
By selecting appropriate cut-points in the dendrogram, the
developer can obtain desired restructurings of the function.
The technique consists of three phases. In the first phase,
“Entity-Attribute Matrix Generation”, the presence state of
attributes in the entities of the function is noted and an
entity-attribute matrix is created. In the next phase, “Sim-
ilarity Matrix Generation”, similarity values between each
pair of entities of the function are calculated using a re-
semblance coefficient. The values are stored in a similarity
matrix. In the final phase, “Clustering”, an HAC algorithm
is applied on the similarity matrix and a cluster hierarchy is
generated, which is represented in a dendrogram. Details on
which entites and attributes are extracted, and the similarity
metric used are discussed in Subsections 3.1 and 3.2, respec-
tively. The HAC algorithms (SLINK, CLINK, WPGMA,
A-KNN, and (k,w)-CC), which are finally applied on the
similarity matrix are discussed in Section 4.

3.1 Entities and attributes
Entities are statements of a function which are to be clus-

tered. Statements can be non-executable or executable. Non-
executable statements include declaration and comment state-
ments, which do not convey the functionality of the function
and hence are ignored. Executable statements include as-
signment statements, condition statements, loop statements,
which have a direct effect on the functionality of a function.
Only executable statements are considered as entities. En-
tities are further classified into two groups: control entities
and non-control entities. A control entity is an entity which
corresponds to a predicate (condition/loop) statement. The
remaining entities are referred to as non-control entities.

����
����
����

����
����
����

���
���
���
���

���
���
���
���

Entity−Attribute Matrix
Generation Generation

Similarity Matrix Clustering

Dendrogram

................

................

................

................

................

................

Function

Figure 2: Restructuring approach at the function-level using hierarchical clustering techniques.

In order to calculate how closely two entities are related,
attributes are used. Attributes correspond to elements used
in entities. Only elements that indicate a functional activity
in an entity, e.g. variables and function names, are chosen
as attributes. Constants, operators, loop variables and key-
words are ignored. Attributes chosen in this manner reveal
data dependency relationships among entities and hence are
classified as data attributes. In order to obtain control de-
pendency relationships, new attributes, control attributes,
are added to the entities. Entities that belong to the same
control block in the source code (e.g. if block), are assigned
the same control entity.
Presence states of attributes in entities are stored in the

entity-attribute matrix. Entities and attributes are repre-
sented in rows and columns, respectively. The value (‘0’,
‘1’, or ‘2’) of each cell of the matrix indicates the presence
state of an attribute in an entity, where ‘0’ indicates the ab-
sence of an attribute, ‘1’ indicates the presence of a control
attribute or the presence of a data attribute in a control en-
tity, and ‘2’ indicates the presence of a data attribute in a
non-control entity.

3.2 Similarity value
The similarity value is a measure (between 0 to 1) of the

degree of similarity between two entities. To calculate simi-
larity values, Lung et al. [14] used a metric based on the Jac-
card coefficient of similarity [5], the resemblance coefficient,
which relies on similarity and dissimilarity matches between
entities. Matches between entity-pairs are obtained from the
entity-attribute matrix. Similarity matches include 1-1 and
2-2 matches. A 1-1 match indicates that two entities have
the same control attribute, or the two entities are control
entities which share a data attribute. A 2-2 match indicates
that two non-control entities share a data attribute. Dis-
similarity matches include 1-0/0-1 and 2-0/0-2 matches. A
1-0/0-1 match indicates that a control attribute is present
in one entity and absent in the other, or, if the two entities
are control entities, a data attribute is present in one and
absent in the other. A 2-0/0-2 match indicates that a data
attribute is present in one entity and absent in the other.
The formula for the coefficient is given below,

coeff = (wdad + wcac)/(wdad + wcac + wdbd + wcbc)
where, coeff is the similarity value between two entities, ac,
ad, bc, bd indicate the number of 1-1, 2-2, 1-0/0-1, 2-0/0-2
matches, respectively, between two entities, and wd, wc are
non-zero weights assigned to data attributes and control at-
tributes respectively. Because data dependency relationship
is stronger than control dependency relationship in terms of
functionality [13], the weights are chosen such that wd>wc.
A weight ratio of 8:3 was found to give the most consistent
restructuring results [14]. Using the above formula similar-
ity values for each pair of entities are stored in the similarity
matrix. The similarity matrix serves as the basis for cluster-
ing algorithms, which are explained in the following section.

4. CLUSTERING ALGORITHMS
In this section, we explain the HACs that were used for

restructuring functions. In Subsection 4.1, we briefly discuss
the previous HACs, and in Subsection 4.2, we present the
new HAC technique that has been introduced.

4.1 SLINK, CLINK, WPGMA, A-KNN
SLINK, CLINK, and WPGMA are HACs that find a hier-

archical clustering of a set of entities. They start by consid-
ering individual entities as clusters and proceed by succes-
sively merging the closest (most similar) two clusters until
only one cluster remains. Entity-pair proximity (similar-
ity) values are obtained from the similarity matrix. After
each merge, the similarity matrix is recalculated in order to
obtain proximites between newly formed clusters. SLINK
defines the similarity between two clusters as the similarity
between the closest pair of entities, taking one from each
cluster. For the same purpose, CLINK uses the similarity
between the farthest pair of entities, taking one from each
cluster, and WPGMA uses the average pairwise similarity
between all pairs of entities from different clusters.

A-KNN [3] is a variant of a traditional HAC. It avoids the
recalculation of the similarity matrix at every merge and
is more efficient than the previous HACs. It classifies an
entity based on the majority classifications of its nearest k-
neighbours. A-KNN was designed for k=3, which starts by
uniquely labelling each entity. It then finds the three nearest
neighbours (clusters) to the entity that will be clustered. If
at least two out of the three clusters have the same label,
the current entity is labelled with the same label of those
two clusters. If all cluster have different labels, the entity
is labelled with the label of the closest cluster. The process
continues repeatedly until all entities have the same label.
(For detailed mechanisms of A-KNN, see [3]).

4.2 (k,w)-Core clustering ((k,w)-CC)
The previous HACs merge clusters pairwise, and only take

into account cluster/entity proximity (similarity) when mak-
ing the merge decisions. As a consequence, the hierarchies
produced by those techniques tend to have a large number
of small clusters, which lead to a large number of cut-points
in the corresponding dendrograms. During analysis of the
dendrogram, the small clusters returned by the cut-points
mostly turn out to be redundant in the restructuring con-
text. This wastes analysis time and makes it difficult to find
meaningful clusters. (k,w)-CC intuitively generates larger,
more meaningful, clusters by considering other structural
properties of clusters. Since, (k,w)-CC is based on (k,w)-
core decomposition, a graph theoretic algorithm, we shall
provide some necessary graph theory definitions before ex-
plaining the technique.

4.2.1 Preliminary graph definitions
A graph G is a tuple (V,E), which consists of a finite set

V of vertices and a finite set E of edges; each edge is an
unordered pair of vertices [21]. An edge joining two vertices
u and v of the graph G = (V,E) can be denoted by (u, v). If
(u, v) ∈ E then the two vertices u and v of the graph G are
said to be adjacent and the edge uv is said to be incident to
the vertices u and v. The degree of a vertex v in G, degG(v),
is the number of edges incident to v in G. A graph G is
called a connected graph if for any two distinct vertices u
and v of G, there is a path between u and v. A graph which
is not connected is called a disconnected graph. A subgraph
of a graph G = (V,E) is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E. If G′ contains all the edges of G that
join vertices in V ′, then G′ is called the subgraph induced
by V ′.
We now give the definitions and lemmas of two key ele-

ments of (k,w)-CC: the k-core, first introduced by Seidman
[24], and the (k,w)-core, introduced in this paper.

Definition 1. Let G = (V,E), be a graph, where V is the
set of vertices and E is the set of edges. A subgraph Hk of G
induced by a vertex set V⊆V is a k-core of G if every vertex
in V has degree at least k in Hk, and Hk is the maximum
subgraph with this property [7].

Lemma 1. If Hk1 , Hk2 are the k1- and k2-cores, respec-
tively, of a graph G, where k2 > k1, then Hk2 is a subgraph
of Hk1 .

For our purpose we shall have to deal with weighted graphs.
A weighted graph is a graph where a real value is associated
with each edge of the graph. We introduce the notion of
(k,w)-cores and present a lemma in this regard.

Definition 2. Let W be the set of different edge weights of
graph G, where w∈W . Then a (k,w)-core of G is a subgraph
of G where the degree of each

Lemma 2. A (k,w)-core of a weighted graph, G, is a sub-
graph of a k-core of G.

4.2.2 Clustering technique
Fig. 3 illustrates the overall approach of our novel clus-

tering technique. In the first step, (Fig. 3(a)) a weighted
graph is realised from the similarity matrix obtained from
the “Similarity Matrix Generation” phase. In this graph,
vertices represent entities and edges represent the presence
of some similarity between the vertices (entities) joined by
the edges. Each edge carries a weight equal to the similar-
ity value between the vertices joined by the edge. Entity-
pairs that have a similarity value of 0 in the similarity ma-
trix have no edges between their representative vertices in
the weighted graph. The similarity matrix therefore, serves
as an adjacency matrix for this weighted graph. In the
next step (Fig. 3(b)), all possible (k,w)-cores are generated
from the weighted graph. In the final step of the approach
(Fig. 3(c)), cores are systematically selected to form clusters,
which together form a cluster hierarchy. We now discuss
these last two steps in detail.
(k,w)-Core Decomposition. Batagelj et al. [7] gave an
implementation for generating all the k-cores of a graph.
The basic property of their algorithm is: if from a given
graph G we recursively delete all vertices, and edges incident
to them, of degree less than k, the remaining graph is the k-
core of G. Based on this property, we developed algorithms
for generating all k-cores and all (k,w)-cores of a graph.

Similarity
Matrix Graph

Weighted
Hierarchy
Cluster

(a) (b) (c)

(k,w)−cores

Figure 3: Clustering approach using (k,w)-Core
Clustering.

Algorithm 1 shows the steps for generating all the k-cores
of a weighted graph G(V,E), where k belongs to the ordered
(in ascending sequence) set, D, of distinct degrees of the ver-
tices of G. The algorithm takes input G in P (Step 1) and
scans every vertex v of VP to find the k-core for the smallest
kϵD. In each iteration, if the degree of a vertex v, degP (v),
is below k, v is deleted (Steps 4-7) and the degrees of vertices
adjacent to v in P are decremented using the update func-
tion in Algorithm 2 (Steps 2, 3 in Algorithm 2). In case the
degrees of any of v’s adjacent vertices, denoted by u where
uϵNP (v), fall below k as a result of the decrements, those
vertices are deleted and the update function is called again,
recursively (Steps 4-7 in Algorithm 2). In this manner, the
first k-core is generated (Step 9 Algorithm 1). For generat-
ing the k-core for the next value of k in ordered set D, it is
sufficient to check the previous k-core rather than the entire
graph (See Lemma 1). Likewise, all the subsequent k-cores
are generated.

Algorithm 1 Generating all k-cores of weighted graph,
G(V,E)

1: P (VP , EP)← G(V,E) //Input
2: for each degree value k in D do
3: for each vertex v in VP do
4: if degP (v) < k then
5: degP (v) ← 0
6: update(v, k, P) //Completes deletion of v in P (Algo-

rithm 2)
7: end if
8: end for
9: Hk ← P (VP , EP)
10: return Hk

11: end for

Algorithm 2 Update connected vertices

1: update(v, k, P)
{

2: for each vertex u in NP (v) do
3: degP (u) ← degP (u)-1
4: if degP (u) < k then
5: degP (u)← 0
6: update(u, k, P)
7: end if
8: end for
}

By Lemma 2, for a particular value of k, say kn, all
(kn, w)-cores of G can be obtained from the kn-core of G.
The steps required to achieve this are shown in Algorithm 3.
A k-core, Hk, is taken as input in P (Step 1). Let w belong
to the ordered (in ascending sequence) set, W , of distinct
edge-weights of the original graph G. In Steps 2-11, for each

weight w, all edges in P with weights (denoted by W) less
than w are deleted and the remaining graph, the intermedi-
ate graph, is stored in set I. In this way, intermediate graphs
for all wϵW is obtained. The deletion of an edge (Step 6)
decrements degrees of vertices on which the edge was inci-
dent. As a result of this, the degrees of some vertices may
fall below k, violating the k constraint of the (k,w)-core.
Thus, in steps 12-19, the degrees of the vertices of each in-
termediate graph of I is checked. In the process, for every
vertex deletion (Step 15-16), the recursive update function
(in Algorithm 2) is called, just as was done in Algorithm 1.
The output is a set of all (k,w)-cores of G for the value of
k, determined by the k-core. (For e.g, if a 3-core of G is
input, Algorithm 3 will generate all the (3, w)- cores of G.)
Thus, in order to obtain all the (k,w)-cores of G, each k-core
obtained from Algorithm 1 is input to Algorithm 3.

Algorithm 3 Generating all (k,w)-cores of G for a certain
value of k.

1: P (VP , EP)← Hk(Vk, Ek)
2: for each weight w in W do
3: for each vertex v in VP do
4: for each vertex u in NP (v) do
5: if W (u, v) < w then
6: delete edge (u, v)
7: end if
8: end for
9: end for
10: I ← {I∪H′

k(Vk, Ek−E′)|E′ is the set of edges in Hk with
W < w}

11: end for
12: for each intermediate graph I′(VI′ , EI′) in I do
13: for each vertex v in VI′ do
14: if degI′ (v) < k then
15: degI′ (v) ← 0
16: update (v, k, I′) //Completes deletion of v in I′ (Al-

gorithm 2)
17: end if
18: end for
19: Hk,w ← P (VP , EP)
20: return Hk,w

21: end for

Core Selection and Clustering Tree Generation. Since
our main objective is to hierarchically cluster entities rep-
resented by the vertices in G, the (k,w)-cores obtained are
systematically selected as clusters. The selection depends
on a new metric, relatedness, which has been introduced in
this paper. The metric gives a quantitative measure of the
level of similarity, between 0 to 1, among the vertices (enti-
ties) of a core. We formulate the relatedness, R(Hk,w), of a
(k,w)-core, Hk,w, as,
R(Hk,w) = strengthk ∗ sharek + strengthw ∗ sharew,

where strengthk(= k/degreemax), resembles the structural
relatedness of Hk,w, and strengthw(= w/weightmax), re-
sembles the weight relatedness of Hk,w (degreemax is the
maximum degree inD and weightmax is the maximum weight
in W). sharek, sharew are the percentage contributions
to the overall relatedness of the core by the structural and
weight relatedness parameters, respectively.
BecauseR considers the structural relationship, strengthk,

of vertices in cores, cores whose vertices have a high inter-
connectivity can also have high R values. Such cores, having
high k values, have a larger number of vertices and as a re-
sult are larger in size. Selecting such cores would, thus, yield
larger clusters. However, evaluating cores solely on their k-

values would lead to unrealistically large clusters that will
not lead to any restructuring of a module. For this rea-
son, R also considers the inter-entity similarity, strengthw,
of the entities in a core. It has been experimentally found
that better results are obtained if more importance is given
to strengthw in calculating the relatedness of a (k,w)-core.
(Best results were obtained with percentages of 30 and 70%
for sharek and sharew, respectively). We now explain the
selection process in detail.

R values of all the cores are computed. Then, the cores
are sorted in descending order, based on their R values, and
entered in set C. Since there may be disconnected cores in
C, a connectivity check is made on the cores. If a core Hk,w

is found to be disconnected, consisting of x subcomponents,
Hk,w is removed from the ordered sequence in C and re-
placed by the subcomponents, H1

k,w, H
2
k,w, . . . , H

x
k,w, where

each of the subcomponents have the same R value as that of
the removed core, Hk,w. Next, by Algorithm 4, cores are di-
rectly selected as clusters from the ordered set, C. At every
iteration, a scanned core, Hk,w, is interpreted as a candidate
cluster, Fk,w (Step 3). If all entities of Fk,w have already
been clustered it is ignored (Steps 5-7). If Fk,w consists
of entities of which some have already been clustered, Fk,w

is merged with the last clusters the common entities were
present in (Steps 8-16), the relatedness of the new cluster
formed being R(Fk,w). If none of the entities of Fk,w have
been clustered earlier, it is selected as a cluster (Step 16).
The steps are repeated until all entities have been clustered.
The output clusters are stored in set, Cfinal, which gives us
the cluster hierarchy. However, if the last cluster in Cfinal

is not found to contain all the entities in G, Cfinal would
yield a disconnected hierarchy as the entities have not been
clustered into a single cluster. In this situation, all the dis-
joint clusters in Cfinal are merged into a single cluster with
an R value of 0 and added to Cfinal.

Algorithm 4 Generating clusters from cores of G(V,E)

1: Let Q be the set of entities representing each vertex in V and
Cfinal be the final set of clusters

2: for each Hk,w(Vk,w, Ek,w) in the ordered set of cores, C, do
3: Fk,w ← cluster consisting of all vertices in Vk,w

4: if k ̸= 1 then
5: if Fk,w ∩Q = ϕ (the current cluster has no new entities)

then
6: continue
7: end if
8: for each entity e in Fk,w do
9: for each cluster Fi in Cfinal (starting from the last

Fi in F) do
10: if e ϵFi then
11: Fk,w ← Fk,w ∪ Fi

12: break
13: end if
14: end for
15: end for
16: Enter Fk,w in Cfinal, where R(Fk,w) = R(Hk,w)
17: Q← Q− Fk,w

18: C ← C −Hk,w

19: if Q = ϕ (all entities have been clustered) then
20: break
21: end if
22: end if
23: end for

Note that initially, cores with k = 1 are ignored (by con-
dition in Step 9). Regardless of their R values, (1, w)-cores

are given less preference because they have the lowest struc-
tural relatedness among all the cores. (1, w)-cores are only
selected when there are un-grouped entities remaining and
all other cores in C have already been selected, in which case
Algorithm 4 is repeated without the condition in Step 4.

4.2.3 Modified attribute selection
We have observed that using the attribute selection cri-

teria of [14] (discussed in Subsection 3.1), some attributes
distort clustering results obtained by (k,w)-CC. Such at-
tributes tend to be present in most of the function’s state-
ments and are called omnipresent attributes. The notion
of omnipresent software components and their negative im-
pact on software clustering was first identified in [20]. A
common example of omnipresent attributes are system vari-
ables and system functions. It has been seen that in most
industrial functions different segments of code use such at-
tributes to access system resources. Despite using the same
system resources, it has been seen that the code segments are
for widely contrasting purposes. Thus, considering system-
related attributes would be of no help in separating these
attributes.
The effect of omnipresent attributes on (k,w)-CC’s perfor-

mance is particularly significant because (k,w)-CC considers
the structural relationship in addition to the inter-similarity
relationship between entities. As was mentioned earlier, the
structural relationship of entities is directly dependent on
their interconnectivity. With omnipresent attributes a large
number of entities are shown to be highly interconnected.
As a consequence, this undesirably leads to the generation
of large clusters having high relatedness values, which ulti-
mately provides no restructuring advice.
We give a new approach for detecting omnipresent at-

tributes based on a new categorization of attributes; we cite
that in a function an attribute can be dependent, i.e. it di-
rectly uses the value of another attribute in a statement, or
independent, i.e. it does not directly use the value of any
other attribute in any statement of the function. Attribute
dependency is identified only for variables, through the = as-
signment operator. For example, in the statement a=b+c, a
is a dependent attribute that directly uses attributes b and
c. We observed that omnipresent attributes mostly tend to
be independent. Thus, we discard independent attributes in
(k,w)-CC.
In order to formally define attribute dependency of at-

tributes within a statement, we need to give a simplified
form for the various types of statements we may encounter.
Since we are concerned with detecting dependency, only
those non-control statements of the function which contain
= as an assignment operator are considered. In order to
present a suitable form of such statements, we shall consider
a refined version of the statement in which all features, ex-
cept the = assignment operator, that do not qualify as an
attribute by Lung et al.’s criteria are excluded (e.g. class
names, constants, keywords, operators, loop variables, etc.).
(Traditional variable characterization in programs based on
variable ‘definition’ and ‘use’ [18] may have been used here.
However, those characterizations are more suited for data
flow analysis in programs, whereas our objective here is
to determine inter-attribute dependency at the statement
level.)
Let S be the set of all non-control statements of a function

which use = as an assignment operator. Let A be the set of

all attributes extracted from the function as per Lung et al.’s
criteria. Then any statement sϵS, in its refined form, can
be represented as L = R, where {L,R} ⊆ A. The prelim-
inary requirement for any attribute aϵA to be a dependent
attribute in a function is that it must belong to L for at
least one statement sϵS. Before giving a complete definition
of a dependent attribute, it is necessary to understand the
ramifications of the various of statements we may encounter.

We have seen most of these statements to have two basic
characteristics. We now explore each of these two charac-
teristics, and show how they affect the process of finding
attribute dependencies in statements.
1. Variables assigned to variables. This trait resembles
a statement where the value of a certain variable is assigned
to another variable, e.g,
a[i] = b * (c + d);

Refining the above by removing all non-attributes, except
the = operator, we have,
a = b c d

On segregating the attributes, we have aϵL and {b,c,d}ϵR.
As can be seen, a uses the values of variables b, c, d and
thus depends on those variables. Note that variable i was
not considered in the dependency assessment because it is
an array index variable which only has referential use.
2. Functions assigned to variables. There are many
statements in which the value returned by a function is as-
signed to a variable. For example,
int a = fn1(b,c) ;

Refining the above by removing all non-attributes, except
the = operator, we have,
a = fn1() b c

On segregating the attributes, we have aϵL and {fn1(),b,c}ϵR.
As can be seen, a, via function fn1(), uses the values of vari-
ables b and c, and thus depends on those two variables. The
relationship of a with fn1() is ignored for the purpose of de-
termining attribute dependency because fn1() is a function
name and not a variable.

Here’s an example from a real-life program that has both
of these characteristics,

title = title + " - " + application.getName();

Here we see a variable, title, being assigned to a concate-
nation of itself, a string, " - ", and the result obtained by
calling a function getName(). getName() is accessed by a
class object, application. By removing all non-attributes
from the statement, except the = operator, we get,

title = title application getName()

By segregating the attributes, we have titleϵL and {title,
application, getName()}ϵR. The relationship between the
title attribute in L and the title attribute in R is ignored
as both attributes refer to the same attribute and therefore
their relationship does not give any meaningful information
on title’s state of dependency. Also, title’s relationship
with getName() is ignored as the latter is a function name.
title only has a dependency on application.

Based on the above discussion, we define the notion of
attribute dependency as follows. Let x, y be attributes be-
longing to A, such that x ̸= y. Then, x depends on y, or
x → y, iff x and y are found to belong to L and R, respec-
tively, of any statement sϵS, provided that neither of x and
y are function names or array index variables.

Definition 3. In any function, an attribute x, where xϵA,
is a dependent attribute if the dependency x → y can be
obtained from any statement sϵS, for any attribute yϵA,

provided that x ̸= y and neither of x and y are function
names or array index variables.

Definition 4. In any function, an attribute x, where xϵA,
is an independent attribute if the dependency x → y cannot
be obtained from any statement sϵS, for any attribute yϵA,
provided that x ̸= y and neither of x and y are function
names or array index variables.

Based on the above definitions, we shall identify and dis-
card independent attributes in the entity-attribute matrix
generation phase when using the (k,w)-CC clustering tech-
nique. As elicited earlier, because independent attributes
generally tend to be omnipresent, discarding them will im-
prove the results obtained by (k,w)-CC. Only dependent
attributes will be used. We shall refer to the attribute selec-
tion mode based on these criteria as Selective (S) Attribute
Selection Mode and that based on Lung et al.’s criteria as
Normal (N) Attribute Selection Mode.

5. EXPERIMENTAL RESULTS

5.1 Experimental Design
In our experiment functions extracted from published pa-

pers and real-life software were restructured using SLINK,
CLINK, WPGMA, A-KNN, and (k,w)-CC. The HACs re-
turned dendrograms that were analyzed to restructure the
functions. In order to compare the techniques, we recorded
the number of cut-points (Ncp) and the number of bad
clusters (Nbc) that were observed in their respective den-
drograms. We also measured the execution time by each
technique to generate the dendrograms and the maximum
cohesion improvement that was attainable through each
technique.
Functions analyzed include, low cohesive functions ex-

tracted from published papers and an industrial open source
Java application, Sweet Home 3D [1], a popular1 cross plat-
form interior design application for drawing 2D plans of
houses. We selected five, large, low cohesive functions from
the application for analysis. A full list of the names of the
functions analyzed in this thesis along with their respective
cohesion measures (C) and lines of code (LOC) is given in
Table 1,

Table 1: Functions analyzed.
List of Functions Restructured

Function Id. Function Name LOC C
1 sum max avg [14] 11 0.191
2 sum and prod [14] 9 0.139
3 sale pay profit [3] 19 0.1524
4 sum1 or sum2 [8] 14 0.073
5 prod1 and prod2 [8] 8 0.121
6 fiboAvg [8] 10 0.28
7 deleteLevel [1] 41 0.13
8 displayView [1] 22 0.053
9 exitAfter3dError [1] 37 0.1022
10 updateFrameTitle [1] 37 0.0587
11 updateSunLocation [1] 40 0.113

1As of September 2012, the application was downloaded
82,689 times from SourceForge, receiving more than 3,000
recommendations.

As was mentioned earlier, for (k,w)-CC we have used
the S-Attribute Selection Mode for attribute selection due
to reasons mentioned in Subsection 4.2.3. For maintaining
consistency there was a need to show that (k,w)-CC did not
gain an advantage over the other techniques solely because of
its modified attribute selection strategy. For this reason, we
have implemented the remaining techniques using both their
prescribed attribute selection mode, the N-Attribute Selec-
tion Mode, and the S-Attribute Selection Mode. Therefore,
effectively, we have implemented nine different restructuring
techniques for each function: (k,w)-CC with S-Attribute Se-
lection Mode only and SLINK, CLINK, WPGMA, A-KNN
with both N- and S-Attribute Selection Mode. Henceforth,
for the 11 functions mentioned above we generated and ana-
lyzed a total of 99 dendrograms by implementing these clus-
tering techniques.

For the calculation of the similarity values (refer to Sub-
section 3.2), a weight ratio of 8:3 for data to control at-
tributes was used.

5.2 Results

5.2.1 Number of cut-points and bad clusters
Ncp and Nbc are significant indicators of the quality of the

dendrograms, particularly in reflecting the ease with which
proper restructuring results could be extracted from the den-
drograms. We determined bad clusters as clusters returned
by a cut-point partition, which did not lead to a meaningful
restructuring of the function, e.g. clusters with only con-
trol entities, clusters splitting conditional constructs, clus-
ters with extreme sizes, clusters without related entities,
etc. Note that a partition obtained from a cut-point may
also yield singleton clusters. Since, singleton clusters do
not give any grouping information they were ignored. Only
non-singleton clusters were classified as good or bad, as they
required inspection and thus consumed analysis time.

Stacked charts representing the total number of cut-points
and bad clusters generated by the techniques with their
prescribed attribute selection modes are given in Figures 4
and 5, respectively.

Figure 4: Total number of cut-points generated
for (k,w)-CC with S-Attribute Selection Mode
and SLINK, CLINK, WPGMA, A-KNN with N-
Attribute Selection Mode.

As can be seen, overall, (k,w)-CC was found to give both a
lesser number of cut-points and a lesser number of bad clus-
ters than all the other techniques. For many of the functions,

Figure 5: Total number of bad clusters gener-
ated for (k,w)-CC with S-Attribute Selection Mode
and SLINK, CLINK, WPGMA, A-KNN with N-
Attribute Selection Mode.

(k,w)-CC gave almost zero bad clusters. On average, (k,w)-
CC gave 52.08%, 50.00%, 58.93%, 52.08% fewer number of
cut-points than did SLINK(N), CLINK(N), WPGMA(N),
and A-KNN(N), respectively. In addition, (k,w)-CC gave
71.95%, 70.89%, 71.25%, 70.51% fewer number of bad clus-
ters than did SLINK(N), CLINK(N), WPGMA(N), and A-
KNN(N), respectively.
From the stacked charts in Figures 4 it can be seen that the

S-Attribute Selection Mode did improve the results of the
clustering techniques in this regard. However, their results
were still inferior to (k,w)-CC’s. is also superior in this re-
gard. On average, (k,w)-CC gave 29.23%, 39.47%, 52.58%,
31.34% fewer number of cut-points than did SLINK(S),
CLINK(S), WPGMA(S), and A-KNN(S), respectively. In
addition, (k,w)-CC gave 58.18%, 59.65%, 70.13%, 53.06%
fewer number of bad clusters than did SLINK(S), CLINK(S),
WPGMA(S), and A-KNN(S), respectively.

Figure 6: Total number of cut-points generated for
all techniques with S-Attribute Selection Mode.

5.2.2 Maximum Cohesion Improvement
In order to demonstrate that (k,w)-CC retained quality

restructuring suggestions, despite reducing cut-points, we
compared the maximum cohesion improvement that was at-
tainable by each technique, for each function. Cohesion was
measured using the metric of Lung et al. [14]. They define
the cohesion of a function as the average resemblance coeffi-
cient between any two entities of the function. The formula

Figure 7: Total number of bad clusters generated
for all techniques with S-Attribute Selection Mode.

for cohesion, C, of a function, F , is given as under,

CF =

m∑
i=1

m∑
j=1

coeff(i, j)

m2
, such that i ̸= j, where m is

the number of entities (executable statements) of the func-
tion and coeff(i, j) is the similarity value for entity-pair
(i, j), (mentioned in Subsection 3.2). Since restructuring
each function resulted in the creation of more functions,
the cohesion of the final restructured version was evaluated
as the average cohesion of all the functions in the system.
Therefore, the cohesion of a restructured version R consist-
ing of n functions is given as,

CR =

n∑
i=1

CFi

n
.

For the purpose of this work our primary focus was on the
relative quality of the results obtained through (k,w)-CC.
Thus, we compared (k,w)-CC’s results only with those tech-
niques which gave the best results with respect to cohesion.
Among the previous clustering techniques, we found CLINK
(N) and WPGMA(N) to give the best results in this aspect.
A comparison of (k,w)-CC with the two techniques based
on percentage improvements in cohesion for each function is
shown in Figures 8.

Figure 8: Maximum Cohesion Improvement
through (k,w)-CC, CLINK(N), WPGMA(N)

We see that (k,w)-CC provides competitive results in terms
of the quality of restructurings obtained. In fact, with the

majority of the functions, it was seen that the quality of the
restructuring results obtained using (k,w)-CC were just as
good as those obtained using the remaining techniques.

5.2.3 Execution Time
Wemeasured the time taken, in milliseconds (ms), by each

clustering technique to generate dendrograms for each of the
functions that were analyzed in our thesis. The execution
time was measured only for the Clustering phase (refer to
Figure 2), i.e., from the point after obtaining the similarity
matrix in the Similarity Matrix Generation Phase to the
point when the final dendrogram is generated).
It was observed that changing the attribute selection mode

did not make any noticeable difference in the execution time
of the techniques, which is why we implemented the algo-
rithms with their prescribed attribute selection modes, i.e.,
N-Attribute Selection Mode for SLINK, CLINK, WPGMA,
A-KNN and S-Attribute Selection Mode for (k,w)-CC. More-
over, SLINK, CLINK, and WPGMA consumed the same
execution times. The reason for this is due to the fact that
they all deploy exactly the same algorithmic mechanism ex-
cept for minor differences in the way they calculate cluster
similarity. Figure 9 shows the corresponding graph for this
information, with the functions presented in increasing order
by LOC. All executions were carried out in a system with a
2.4 GHz processor and a 4096 Mb RAM.

Figure 9: Execution times of the clustering tech-
niques for each function, with functions arranged
by LOC.

As can be seen, SLINK, CLINK, and WPGMA consumed
the greatest execution times, while, A-KNN was found to
perform the fastest. (k,w)-CC performance was intermedi-
ary, performing slower than A-KNN but significantly faster
than the other three; on average, (k,w)-CC performed 59.72%
percent faster than SLINK, CLINK, and WPGMA.

5.3 Discussion and Limitations
From our experiments we have established that (k,w)-CC

produces both a lesser number of cut-points and bad clusters
in its dendrogram outputs. Consequently, the dendrograms
are easier to analyze and more readily usable for the purpose
of restructuring codes than are those of previously good soft-
ware clustering techniques, SLINK, CLINK, WPGMA, and
A-KNN. It was also established that the quality of (k,w)-
CC’s outputs was not noticeably compromised as a result of
reducing the two parameters. A key finding in this regard
was that the previous algorithms gave many meaningful re-
sults, of varying quality in terms of overall cohesion. In
contrast, (k,w)-CC, for most functions, gave only a single
restructuring result, which turned out to be as good as the

best restructuring results returned by the other techniques.
Thus, (k,w)-CC was found not only to discard the redun-
dant results, but also to discard meaningful results which
were of inferior quality.

Nevertheless, (k,w)-CC was found to suffer in producing
dendrograms for functions which contained widely present
attributes that qualified as dependent attributes by the cri-
teria of the Selective Attribute Selection Strategy. Although
such cases were rare, this observation showed that the Se-
lective Attribute Selection Strategy cannot always eliminate
all omnipresent attributes of a function. In view of the over-
head of the techniques, despite being significantly faster than
SLINK, CLINK, and WPGMA, (k,w)-CC was much slower
than A-KNN.

6. CONCLUSION AND FUTURE WORK
In this work, we developed a new hierarchical clustering

technique based on (k,w)-core decomposition, (k,w)-Core
Clustering ((k,w)-CC), for restructuring functions in order
to improve cohesion, one of the most crucial aspects of soft-
ware quality. We compared the performance of (k,w)-CC
with four previous HACs (SLINK, CLINK, WPGMA, and
A-KNN), that were known to give good restructuring solu-
tions. The techniques were implemented on functions ex-
tracted from published papers and real-life software. Our
technique gave the same restructuring solutions as those of
the other techniques through better dendrograms. In par-
ticular, (k,w)-CC generated dendrograms that contained a
lesser number of cut-points and a lesser number of bad clus-
ters. As a result, (k,w)-CC’s dendrograms were easier to
analyze, from which meaningful suggestions were more read-
ily retrievable. An important characteristic of (k,w)-CC is
that it considers the structural relationship (interconnectiv-
ity) of entities, in addition to their inter-similarities. As a
consequence, (k,w)-CC intuitively produces larger and more
meaningful clusters. Performance-wise, although (k,w)-CC
was slower than A-KNN, it was considerably faster than
SLINK, CLINK, and WPGMA.

Future works on this area can entail the design of effi-
cient software restructuring techniques that consider other
properties of entity relationships with the aim of obtaining
more meaningful suggestions on restructuring. In addition
to that, given (k,w)-CC’s benefits over the previous tech-
niques at the function-level, there is good prospect in in-
vestigating the results of (k,w)-CC when applied to higher
levels of software, e.g. to class, package, or even architecture
levels.

7. ACKNOWLEDGMENTS
We would like to thank Mohammad Tanvir Parvez, Abdu-

laziz Alkhalid, Mohammad Alshayeb, and Sabri Mahmoud
for providing the implementation details of the A-KNN al-
gorithm.

8. REFERENCES
[1] Sweethome3d,

http://sourceforge.net/projects/sweethome3d/?
source=directory, July 2012.

[2] A. Abran and W. M. James. Guide to the Software
Engineering Body of Knowledge (SWEBOK). IEEE
Computer Science Society, 2004.

[3] A. Alkhalid, M. Alshayeb, and S. Mahmoud. Software
refactoring at the function level using new adaptive
k-nearest neighbor algorithm. Journal of Advances in
Engineering Software, 41(10-11):1160–1178, 2010.

[4] A. Alkhalid, M. Alshayeb, and S. Mahmoud. Software
refactoring at the package level using clustering
techniques. IET Software, 5(3):276–284, 2011.

[5] N. Anquetil and T. C. Lethbridge. Experiments with
clustering as a software remodularization method. In
Proceedings of 6th Working Conference on Reverse
Engineering, pages 235–255, 1999.

[6] N. Anquetil and T. C. Lethbridge. Comparative study
of clustering algorithms and abstract representations
for software remodularisation. In Proceedings of IEE
Software, volume 150, pages 185–201, 2003.

[7] V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. In CoRR (Computing
Research Repository), cs.DS/0310049, 2003.

[8] J. M. Bieman and B.-K. Kang. Measuring design-level
cohesion. IEEE Transactions on Software Engineering,
24(2):111–124, 1998.

[9] A. Chatzigeorgiou, N. Tsantalis, and G. Stephanides.
Application of graph theory to oo software
engineering. In Proceedings of the 2006 international
workshop on Workshop on interdisciplinary software
engineering research, pages 29–36. ACM Press, 2006.

[10] S. C. Choi and W. Scacchi. Extracting and
restructuring the design of large systems. IEEE
Software, 7(1):66–71, 1990.

[11] I. G. Czibula and G. Serban. Improving systems
design using a clustering approach. International
Journal of Computer Science and Network Security,
6(12):40–49, 2006.

[12] B. K. Kang and J. M. Bieman. A quantitative
framework for software restructuring. Journal of
Software Maintenance: Research and Practice,
11(4):245–284, 1999.

[13] A. Lakhotia. Rule-based approach to computing
module cohesion. In Proceedings of the 15th
International Conference on Software Engineering,
pages 35–44, 1993.

[14] C. H. Lung, X. Xu, M. Zaman, and A. Srinivasan.
Program restructuring using clustering techniques.
Journal of Systems and Software, 79(9):1261–1279,
2006.

[15] C. H. Lung, M. Zaman, and A. Nandi. Applications of
clustering techniques to software partitioning, recovery
and restructuring. Journal of Systems and Software,
73(2):227–244, 2006.

[16] R. Mall. Fundamentals of Software Engineering.
Prentice-Hall, New Delhi, 2nd edition, 2008.

[17] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and
E. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In
Proceedings of the 6th International Workshop on
Program Comprehension, pages 45–53. IEEE
Computer Science Society, 1998.

[18] A. P. Mathur. Foundations of Software Testing.
Pearson, New Delhi, 2008.

[19] B. S. Mitchell and S. Mancoridis. On the automatic
modularization of software systems using the bunch

tool. IEEE Transactions on Software Engineering,
32(3):193–208, 2006.

[20] H. Muller, M. Orgun, S. Tilley, and J. Uhl. A reverse
engineering approach to subsystem structure
identification. Journal of Software Maintenance:
Research and Practice, 5(4):181–204, 1993.

[21] T. Nishizeki and M. S. Rahman. Planar Graph
Drawing. World Scientific, Singapore, 2004.

[22] K. Praditwong, M. Harman, and X. Yao. Software
module clustering as a multi-objective search problem.
IEEE Transactions on Software Engineering,
37(2):264–282, 2011.

[23] R. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill, 6th edition, 2004.

[24] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269–287, 1983.

[25] G. Serban and I. G. Czibula. Object-oriented software
systems restructuring through clustering. In
Proceedings of the Artificial Intelligence and Soft
Computing ICAISC 2008, pages 693–704.
Springer-Verlag, 2008.

APPENDIX
A. PROOFS OF LEMMAS IN SUBSECTION

4.2.1
Proof of Lemma 1. (Proof by Contradiction.) Let us
assume that Hk1 , Hk2 are the k1- and k2-cores, respectively,
of a graph G, such that k2 > k1. Suppose that Hk2 is not a
subgraph of Hk1 .

By the definition of k-core, (see Definition 1), each vertex
in Hk1 , has a degree of at least k1, and each vertex in Hk2

has a degree of at least k2. As k2 > k1, then clearly each
vertex in Hk2 has a degree > k1. Thus, we have two sub-
graphs, Hk1 , Hk2 where each vertex of the subgraphs has
degree ≥ k1. Since, Hk2 is not a subgraph of Hk1 , then Hk1

is not the maximum subgraph in which all vertices have de-
gree greater than or equal to k1. Thus, Hk1 is not a k1-core
which is contradictory to what we had assumed. Therefore,
Hk2 must be a subgraph of Hk1 .

Proof of Lemma 2. (Proof by Contradiction.) Let us as-
sume thatHk1 , Hk1,w1 are the k1- and (k1, w1)-cores, respec-
tively, of a graph G. Suppose that Hk1,w1 is not a subgraph
of Hk1 .

By the definitions of k-core and (k,w)-core (see Defini-
tions 1, 2), each vertex in Hk1 and Hk1,w1 has degree ≥ k1.
Since, Hk1,w1 is not a subgraph of Hk1 , then Hk1 is not the
maximum subgraph in which all vertices have degree greater
than or equal to k1. Thus, Hk1 is not a k1-core which is con-
tradictory to what we had assumed. Therefore, Hk1,w1 must
be a subgraph of Hk1 .

B. SAMPLE RESTRUCTURING RESULT
In this section, we shall give the complete results obtained

while restructuring the exitAfter3dError() function (func-
tion no. 9 in Table 1.) Below is the code for the function,

0 private void exitAfter3dError() {
1 boolean modifiedHomes = false;
2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;

5 break;
6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();
10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();
15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);
17 homeFrame.toFront();
18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.
SWEET_HOME_3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);
23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();
26 }
27 }
28 deleteHome(home);
29 }
30 }
31 }
32 for (Home home : getHomes()) {
33 deleteHome(home);
34 }
35 System.exit(0);
36 }

Table 2, shows the dendrograms that were obtained when
the above code was restructured using the different cluster-
ing techniques. The entity numbers in the horizontal axes
of the dendrograms refer to the line numbers of above code.
The number of cut-points and the number of bad clusters
returned by each technique have also been indicated in the
tables. The following notation were used in the tables,
1. {X,Y, Z} - a partition of clusters X,Y, Z, obtained from
a cut-point, where each of X,Y, Z contain more than one en-
tity. Thus, any singleton clusters returned by the partitions
are not shown.
2. (x, y) - a cluster consisting of the entities x and y.
3. (x ↔ y) - a cluster in the dendrogram consisting of all
the entities listed on the horizontal axis of the corresponding
dendrogram that are between x to y, including x and y.
4. Any cluster that is struck out, e.g. (x, y) or (x ↔ y),
indicates that the cluster is a bad cluster.

While analyzing the clusters obtained from the dendro-
grams, there were several patterns observed in the clusters.
Many of the clusters were found to be of extreme sizes. For
example clusters, (25,24), (33,32), (22,20), (28,13), returned
by most of the techniques, were too small to be considered
as the constituents of individual functions, and clusters like
(18 ↔ 11) in the dendrogram of AKNN(N) were too big
to form any meaningful restructuring. There were also sev-
eral clusters which did not include all related entities, e.g.
cluster (17,16) which omits the related entity 18. There were
also clusters which only contained control entities, which did
not meaningfully suggest on how to restructure the code.
Examples include (20,15), (32,2), and (13,12). Finally, we
found clusters which suggested in splitting conditional con-
structs and violating the original execution sequence of the
code. An example is cluster (25 ↔ 12) which is returned by
SLINK(N). It suggests in grouping the highlighted entities

shown below,

11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();
15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);
17 homeFrame.toFront();
18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.
SWEET_HOME_3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);
23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();
26 }
27 }
28 deleteHome(home);
29 }
30 }
31 }
32 for (Home home : getHomes()) {
33 deleteHome(home);
34 }

As can be seen, the cluster (25 ↔ 12) suggests in split-
ting the try-catch construct by omitting entity 22 in the
try block. Also, the cluster breaks the intended execution
sequence of the function by leaving out the if block across
entities 15-18.

Based on the meaningful clusters that were output by the
dendrograms, the following two restructured versions of the
function were obtained. The versions are represented by in-
dicating the lines which should be extracted from the orig-
inal function. In particular, lines that are highlighted with
the same colour are extracted into a separate function.

Restructured Version 1

0 private void exitAfter3dError() {
1 boolean modifiedHomes = false;
2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;
5 break;
6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();
10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();
15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);
17 homeFrame.toFront();
18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.
SWEET_HOME_3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);
23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();
26 }
27 }
28 deleteHome(home);
29 }
30 }
31 }
32 for (Home home : getHomes()) {

33 deleteHome(home);
34 }
35 System.exit(0);
36 }

Restructured Version 2

0 private void exitAfter3dError() {
1 boolean modifiedHomes = false;
2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;
5 break;
6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();
10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();
15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);
17 homeFrame.toFront();
18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.
SWEET_HOME_3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);
23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();
26 }
27 }
28 deleteHome(home);
29 }
30 }
31 }
32 for (Home home : getHomes()) {
33 deleteHome(home);
34 }
35 System.exit(0);
36 }

Both the restructured versions were found to have al-
most the same cohesion, each giving nearly a two-fold im-
provement with respect to the original cohesion of the func-
tion. (The cohesions of restructured versions 1 and 2 are
0.2 and 0.233, respectively. The original function’s cohesion
is 0.1022, shown in Table 1.) The first version was sug-
gested only by SLINK(N), CLINK(N), WPGMA(N), and
A-KNN(N). The second version was suggested by SLINK(S),
CLINK(S), WPGMA(S), A-KNN(S), and (k,w)-CC.
As can be seen, (k,w)-CC gave both a lower number of

cut-points and a lower number of bad clusters than did all
the other techniques.

Table 2: Cluster outputs from dendrograms obtained for the exitAfter3dError() function.
SLINK (N)

Cut-Point Partitions:
{(21 ↔ 15)}, {(25 ↔ 24)}, {(25 ↔ 15),(33,28),(4,1)}, {(13,12),(32,2),(5,3)}, {(17,16),(22,14),(33 ↔ 12)},
{(25 ↔ 12),(5 ↔ 1)}, {(22 ↔ 12)}, {(22 ↔ 1)}, {(17 ↔ 1)}, {(18 ↔ 1)}, {(9, 8)}, {(11 ↔ 1)}

Ncp = 12, Nbc = 17

CLINK (N)

Cut-Point Partitions:
{(20,15)}, {(25,24)}, {(33,28),(4,1)}, {(32,2),(13,12),(5,3)}, {(17,16),(22,14)}, {(21↔15)},
{(18↔16),(21↔12)}, {(9,8)}, {(21↔11)}, {(25↔14)}, {(18↔14)}, {(18↔11)}

Ncp = 12, Nbc = 13

WPGMA (N)

Cut-Point Partitions:
{(20,15)}, {(25,24)}, {(33,28),(4,1)}, {(21↔15)}, {(13,12),(5,3),(32,2)}, {(22,14),(17,16)}, {(25↔15)},
{(25↔12),(18↔16)}, {(33↔14)}, {(18↔12),(9,8)}, {(5↔2)}, {(33↔12)}, {(33↔11),(5↔1)}, {(33↔1)}

Ncp = 14, Nbc = 19

A-KNN (N)

Cut-Point Partitions:
{(21↔15)}, {(24,24)}, {(25↔15),(32,28),(4,1)}, {(5,3),(32,2),(13,12)}, {(33↔12),(17,16)},
{(25↔12),(5↔1)}, {(25↔14)}, {(25↔2)}, {(17↔2)}, {(18↔2)}, {(9,8)}, {(18↔11)}

Ncp = 12, Nbc = 16
Continued on next page

Table 3: Continued from previous page
SLINK (S)

Cut-Point Partitions:
{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(22↔14)}, {(18↔16)},
{(25↔14),(28↔12)}, {(18↔14)}, {(18↔12)}, {(18↔11),(5↔2)}

Ncp = 8, Nbc = 9

CLINK(S)

Cut-Point Partitions:
{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15,14)}, {(18↔16)}, {(25↔21),(28↔12)},
{(22↔14),(5↔2)}, {(25↔12)}, {(22↔12)}, {(18↔12)}, {(18↔11)}

Ncp = 10, Nbc = 12

WPGMA(S)

Cut-Point Partitions:
{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15,14)}, {(18↔16)}, {(25↔21),(28↔12)},
{(22↔14)}, {(25↔12)}, {(5↔2)}, {(22↔12)}, {(22↔16)}, {(22↔11)}

Ncp = 11, Nbc = 12

Continued on next page

Table 4: Continued from previous page
A-KNN(S)

Cut-Point Partitions:
{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15↔14)}, {(18↔16)}, {(21↔14),(28↔12)},
{(18↔14)}, {(18↔12)}, {(18↔1),(5↔2)}

Ncp = 8, Nbc = 9

(k,w)-CC(S)

Cut-Point Partitions:
{(3↔5)}, {(8,9),(32,33)}, {(14↔22)}, {(16↔18)}, {(14↔28)}, {(14↔12)}, {(3↔2)}, {(14↔11)}

Ncp = 8, Nbc = 5

