Process Theories and
Taxonomies In
Software Engineering

Aftab Hussain

University of California, Irvine
aftabh@uci.edu

February 2, 2020

This article presents notes taken from Paul Ralph’s 2018
paper [1]. The paper proposes guidelines synthesized on
the basis of process theories and taxonomies that can
enable practitioners to understand “how” things
happen in the software engineering domain. Most
existing theories, as mentioned by the author, illustrate
the “why” aspect in this regard. Here, some key ideas of
the paper are outlined and analyzed, in a casual writing
style.

Guidelines have a broad scope?

The introduction of the paper discusses a
dichotomy of software engineering research
thought. The first are theories, which are used “for
explaining, predicting, analyzing and
understanding diverse SE phenomena”. Three
kinds of theories are clearly and concisely
described: variance theories, process theories, and
theories for understanding. (As a sidenote, from
these definitions it can be inferred that most of the
hypotheses explored in the software repository
mining community, e.g. [2,3], fall under the
umbrella of variance theories.) The second
component of the dichotomy are taxonomies.

The focus of this paper is on process theories
and taxonomies. The purpose of the paper is
stated as, “to adapt existing guidance on
developing and evaluating taxonomies and process
theories for software engineering”.

An equivalency between process theories and
taxonomies is argued, and consequently the
author highlights the need to study them together.
Before embarking on discussing the equivalency of
the two, the author discusses the naivety in
characterizing process theories as not real

theories and the subtleties of classification (a
clearly explained student grouping example is
used.).

Details of what is the scope of these guidelines
and what is meant by the term “guidance (or
guideline)” itself are not elaborated upon in the
introduction. However, we get some insight from
this point proposed as one of the reasons for
coming up with such a guideline: “Reading a
single introduction, tailored to one’s field, is more
efficient and less confusing than wading through a
hundred papers and books from a dozen other
fields trying to create and justify a reasonable
methodology.” A very salient reality often
encountered in trying to understand a research
area.

Yes, the scope of the guidelines is broad

In the section where the importance of process
theories and taxonomies are discussed (Why are
taxonomies and process theories important?), it
becomes clear that the author seeks to attack a
very broad problem in all software engineering.
Some excellent points are shown on the
narrowness of existing guides for (such as those
derived from the field of software development
methodologies) explaining software engineering
discipline. The author’s reasoning substantiates a
strong position for the need of having more
fine-grained terminology for describing various
aspects of software engineering, which the author
believes could be obtained from process theories
and taxonomies.

Good resource on process theories
The section, “A Brief Review of Process Theories”
gives a good background on work in process
theories in the area of management. It expands on
Van de Ven and Poole’s classifications of types of
process theories [4] — dialectic, teleological,
evolutionary, and lifecycle. Tt also elaborates on
some misconceptions on process theories, such as,
1. Process theories are mnot software
development methodologies like Scrum
and Lean [5].
2. A process theory is not an algorithm.

https://www.researchgate.net/profile/Paul_Ralph/publication/322673772_Toward_Methodological_Guidelines_for_Process_Theories_and_Taxonomies_in_Software_Engineering/links/5a6bf9dfaca2722c947bc2d4/Toward-Methodological-Guidelines-for-Process-Theories-and-Taxonomies-in-Software-Engineering.pdf

3. Causal relationships between variables
cannot be typically drawn from process
theories.

Finally, the section also provides an elaboration on
the quality aspect of process theories, and their
limitations.

13 Interesting Talking Points

(Please refer to the paper for citations in the following quotes.)

1. Rethinking how we think about qualitative
research:

“rejecting qualitative process theory research for
having small, convenience samples while accepting
experiments with small, convenience samples is
prejudice against qualitative research, not “high
standards.”

Such prevailing perceptions, however, begs the
question: what are the advantages of empirical
studies over qualitative research, and why do such
perceptions exist?

2. Process theory has measurability issues:

“They mnormally do mnot make point estimate
predictions; for example, how long a process will take.
With the exception of evolutionary theories, process
theories rarely make probabilistic predictions; for
example, whether a project will succeed.”

It would be interesting to investigate how
qualitative research may be enhanced with
quantitative findings, such that we don’t lose out
on the benefits of qualitative research.

3. Improving the state-of-the art based on process
theories is difficult, since process theories don’t
generally recommend:

“Incorporating prescriptions into a process theory is
intrinsically problematic. While a researcher might
make prescriptions by interpreting a situation using a
process theory, the theory itself should explain only
what is, not what should be.”

Such inherent challenges in process theories
should give at least some researchers on the
extensibility of process theories. Why should we be
bound to the existing characteristics of process
theory?

4. Building theories from software development
methodologies is tricky because of their inherent
difference in utility:

“An SDM (software development method) is a system
of prescriptions for doing something effectively.
Methods — are inappropriate foundations for
taxonomies and process theories ... Methods prescribe
what should exist and should be done. Taxonomies
and process theories describe what does exist and
what actually happens. Adapting a method into a
theory therefore tends to over-rationalize reality ...”
An interesting path to take in this regard would be
to explore what’s missing in the adaptation
process of a method into a theory, and whether we
can strengthen a method with components from
an existing theory and then develop new theories.

5. The importance of being cautious of theorizing
based on personal experience:

“theorizing by reflecting on your own experience is
hazardous because our experiences are misleading.
They are rarely a representative sample. Our beliefs
are often not calibrated to available evidence ...our
memories often diverge from actual events....”

In order to enhance the values of personal
experiences, it would be worth exploring cases
where our memories do not diverge from actual
events and help us to make better decisions.

6. Expertise cannot be relied upon solely:

“Our expertise does not inoculate us against cognitive
and perceptual biases ...experts are susceplible lo
system justification—the tendency to irrationally
defend the status quo ...Researchers are also prone lo
over-rationalizing phenomena ... The entire point of
Grounded Theory is, arguably to overcome these
problems by holding the researcher close to the data

2

7. Some useful questions to address when
developing a process theory:

“What entities are changing?”

“Is there a pattern at all¢”

“If there is a pattern, what type is it?”

8. Thoughts on writing a good software
engineering theory paper:

“the paper should describe the emergence of the
theory. While the theory generation process may
involve non-replicable intuitive leaps, the reader
should be able to recover and understand the
researcher’s logic and process. In my experience, the
literature review or empirical study, not the theory
itself, often carries the paper and convinces the
reviewers”

It is worth exploring how reviewers may
understand a researcher’s logic and process
without the need of having the researcher describe
existing literature. This would be particularly
crucial when a researcher has come up with a
finding that is indeed novel, but in reality has
never even looked into or thought about existing
related works. Does a researcher’s unawareness of
existing work in a domain countenance a rejection
of the researcher’s work without even assessing its
novelty and valuability?

0. “Guidelines are supposed to help, not shackle.”

10. “There is no such thing as representative sampling
in case studies or grounded theory.”

1. Theory paper reviewers should “not expect a
manuscript to review all relevant prior work, because
that could include thousands of studies”

This may add to the reflections in point 8 from a
stand-point of literature-reviewing-feasibility.

12. Theory paper reviewers should “expect explicit
definitions for all elements of the proposed theory.”

13. Theory paper reviewers should “not criticize a
theory for lacking novelly unless you can cite an
existing theory that explains the same phenomenon
better than the proposed theory. Researchers may
avoid emphasizing novelty because peer review is
biased against new ideas”

References

[1] Paul Ralph, Toward Methodological Guidelines for Process
Theories and Taxonomies in Software Engineering, IEEE
Transactions on Software Engineering, 2018

[2] Di Yang, Aftab Hussain, Cristina Videira Lopes, From query
to usable code: an analysis of stack overflow code snippets,
Proceedings of the 13th International Conference on Mining
Software Repositories, 2016

[3] Stack Overflow in Github: Any Snippets There?,
Proceedings of the 14th International Conference on Mining
Software Repositories (MSR), 2017

[4] A. H. Van de Ven and M. S. Poole, “Explaining development
and change in organizations,” The Academy of
Management Review, vol. 20, no. 3, pp. 510-540, 1995.

|5] M. Poppendieck and T. Poppendieck, Lean Software
Development: An Agile Toolkit. Addison-Wesley Professional,
2003.

