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Abstract

Bad designs in software code have a significant impact on the total cost

incurred in the development of software. This is because software code with

bad designs has poor structure, which decreases its readability, understand-

ability and maintainability. Software restructuring is thus a crucial activity

in software development. Cohesion is an important measure in assessing the

quality of software. The cohesion of a software module is the degree to which

module components belong together. An ill-structured software code is charac-

terized by low cohesion. Software restructuring techniques based on hierarchical

agglomerative clustering (HAC) algorithms have been widely used to restruc-

ture large modules with low cohesion into smaller modules with high cohesion.

These techniques generate clustering trees (or dendrograms) of the modules.

The clustering trees are then sliced at different cut-points to obtain the desired

restructurings. Choosing the appropriate cut-points is a difficult problem in

clustering. This problem is exacerbated in previous HAC techniques as those

techniques generate clustering trees which have a large number of cut-points.

Moreover, many of those cut-points return clusters of which only a few lead to

a meaningful restructuring.

In this thesis, we propose a new hierarchical clustering technique for re-

structuring software at the function-level that generates clustering trees where

the number of cut-points is reduced, and the quality of the cut-points is im-

proved. To establish this we compare the results of our technique with those of

four previous hierarchical clustering algorithms. We also develop an easy-to-use

software tool that allows the user to generate clustering trees of functions us-

ing five different clustering algorithms, including the algorithm proposed in this

thesis. Finally, we give a characterization of clusters returned by cut-points, in

the context of software restructuring.
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Chapter 1

Introduction

Software code in the industry undergoes frequent change due to the varying

needs of the user. Increased modifications of the code lead to the gradual

degradation of its structure, and the consequent emergence of bad designs. Bad

designs refer to structural flaws that are usually associated with bad program-

ming practices. Although such structural flaws may not necessarily affect the

intended functionality of the software code, their presence reduces the readabil-

ity, reusability, and therefore the quality of the code. This adversely affects two

of the costliest phases of software development: maintenance and evolution1.

A key step involved in both software maintenance and software evolution

is code comprehension, which constitutes 40% to 60% of the efforts given in

these two phases [AJ04]. Since code comprehensibility becomes difficult with

ill-structured software code, performing these two phases on such code becomes

harder and hence costlier, having a ballooning effect on the overall cost of soft-

ware development. These significant implications of ill-structured software code

have led to the emergence of extensive research in the field of software restruc-

turing.

Software restructuring is the process of reorganizing the internal structure

of existing software systems in order to improve its quality, without modifying

its external behaviour [KB99, FBB+99]. One of the most important measures

of assessing the quality of software code is cohesion. The cohesion of a software

1It has been found that 60% to 70% of the total costs of developing a typical software

product are incurred in the maintenance and evolution phases of software development [Mal08,

LXZS06].

1



module is the degree of functional strength of the module [Mal08]. In other

words, it is the degree to which a software module does a particular activity.

Ill-structured software code is characterized by low cohesion [Pre04]. In practice,

a software module could represent a function, class, package, library, etc.

Over the years, there has been numerous cohesion-based software restructur-

ing techniques developed, many of which have been used to great effect. Among

the most successful software restructuring techniques were those which used hi-

erarchical clustering techniques. Compared to other types of techniques, these

techniques were found to be more efficient, and also to give good restructuring

suggestions.

Software restructuring techniques based on hierarchical clustering deploy hi-

erarchical agglomerative clustering algorithms on raw data that represent the

components of a software module that is to be restructured. The outputs con-

sist of clustering trees (which are alternately referred to as dendrograms) that

provide suggestions on how to restructure the software. The suggestions can

be extracted by observing the clusters obtained from different cut-points of the

clustering tree.

An important problem with past hierarchical clustering techniques is that

they generate dendrograms that have a large number of cut-points, which re-

turn a large number of redundant clusters. Redundant clusters do not lead to

a meaningful restructuring of the software. A meaningful restructuring of the

software corresponds to a restructuring that is logically coherent and in-line

with the original purpose of the software. It becomes extremely difficult for

the programmer to choose the appropriate cut-point(s) and sieve out mean-

ingful clusters from a clustering tree that gives a large number of cut-points,

which return a large number of redundant clusters. Also, inspecting redundant

clusters wastes precious time of the developer during analysis of the clustering

tree. In this thesis, we concentrate on the problem of minimizing the num-

ber of cut-points and the number of redundant clusters. In order to do so we

have developed an entirely new hierarchical clustering technique based on k-

core decomposition [BZ03]. The new technique intuitively limits the number

of cut-points and redundant clusters returned in its clustering tree output by

using structural properties of the software components, without the use of any

user-determined threshold values. We also compared the performance of our

2



technique with those of four previous hierarchical clustering techniques that

have been found to be successful for software restructuring.

In the rest of this chapter we explore the various aspects of software re-

structuring, previous research in the field, and the significance of the problem

that has been dealt with in this thesis. - In Section 1.1, we give an example

of an ill-structured software and show how it can be improved in the cohesion

perspective. In Section 1.2, we give an overview of the various software re-

structuring techniques used, emphasizing on hierarchical clustering techniques,

which is the domain of our thesis. In particular, in the section we mention the

problems faced by the hierarchical clustering techniques. In Section 1.3, the

objectives of this thesis are stated. In Section 1.4, we briefly present the results

that were obtained in this thesis work. Finally, in Section 1.5, the organization

of this entire thesis book is outlined.

1.1 An Example of Ill-Structured Code

In this section, we explain the notion of cohesiveness in a sample function and

show how its cohesiveness can be improved by suitably rewriting the function.

void sum and prod(int n, int[] arr) {
sum = 0;

prod = 1;

for ( int i = 1 ; i < n ; i ++ )

{
sum = sum + arr [ i ] ;

prod = prod * arr [ i ] ;

}
avg = sum / n ;

}

Figure 1.1: The sum prod function [KB99].

Fig. 1.1 shows an example of a low-cohesive function. The function calculates

the sum, product, and average of a set of integers. The three values are stored in

the variables sum, prod, and avg respectively. The set of integers are input using

the array variable, arr. Although the function correctly calculates the values, it

is not optimally cohesive as it is carrying out a number of tasks in a single block

3



of code. A better and a more cohesive version of this code can be written in

the manner shown in Fig. 1.2. Here the function in Fig. 1.2(a) only deals with

the calculations relevant to sum, whereas the function in Fig. 1.2(b) only deals

with the calculation of prod. Although both versions of the code fulfil the same

functional objective, the restructured version is clearly easier to understand.

The design flaw that has been corrected in this example is referred to as “long

method”, as termed in the authoritative book on refactoring (another term for

restructuring) by Fowler et al. [FBB+99]. It has been widely recommended

that long methods in codes should be split into shorter methods such that

each method performs a unique task, as far as possible. This simplifies code

structure, enhancing code readability, and is consequently in-line with object-

oriented programming principles.

void sum(int n, int[] arr) { void prod(int n, int[] arr) {

sum = 0; prod = 1;

for ( int i = 1 ; i < n ; i ++ ) for ( int i = 1 ; i < n ; i ++ )

{ {

sum = sum + arr [ i ] ; prod = prod * arr [ i ] ;

} }

avg = sum / n ; }

}

(a) (b)

Figure 1.2: Restructured version of the function in Fig 1.1.

1.2 Software Restructuring Techniques

In this section, we discuss the objectives of software restructuring techniques

at different levels of the software paradigm. In addition to that, we present the

previous works that have been carried out in the field of software restructur-

ing; in Subsection 1.2.1 we discuss partitional techniques, in Subsection 1.2.2

we discuss optimization techniques, and finally in Subsection 1.2.3 we discuss

hierarchical clustering techniques.

As was mentioned earlier, software restructuring is the process of improving

the quality of software code. Cohesion is a key aspect of the quality of soft-

4



ware code. Software restructuring techniques that focus on cohesion provide

suggestions as to how to rewrite and thus remodularize a large, low-cohesive

module into smaller modules of higher cohesion, as shown in Fig. 1.3. A soft-

ware module can be a function, class, package, library, etc. Consequently, a

restructuring technique can work at different levels. A restructuring technique

that works at the function-level restructures functions, a technique that works

at the class-level restructures classes, and so on.

small,
high−cohesive

modules

large,
low−cohesive

module

Figure 1.3: Cohesion-based software restructuring.

A software module consists of components , which in turn consist of at-

tributes. In order to remodularize a software module to increase its cohesion, a

restructuring technique categorizes the components of a module based on the

similarity between its components. The similarity is evaluated based on the

number of common attributes among the components.

As an example (see Fig. 1.4), say we have a package in which classes corre-

spond to its components. The attributes are resembled by the usages of various

functions in the classes. On applying a software restructuring technique on this

package, suggestions on how the classes should be grouped are obtained. In

particular, the technique recommends to group classes that are found to share

a relatively large number of functions. The groupings serve as the basis of new

packages which can be constructed from the original software module. Con-

structing new packages in this manner will increase the overall cohesion of the

system.

However, it is important to note that when applying restructuring techniques

different restructuring results may be obtained, of which some may not even lead

to a meaningful restructuring of the software. The final decision lies with the

software developer as to how to restructure the code. Thus, when using these

5
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Figure 1.4: Cohesion-based restructuring at the package-level.

techniques, the developer will only take help from the suggestions, while mainly

using his/her programming expertise and intuition in order to obtain the desired

restructuring. Over the years, there have been many software restructuring

techniques proposed. In this section we discuss some of the techniques, while

mainly focussing on hierarchical clustering techniques.

1.2.1 Partitional Techniques

Partitional techniques address the software remodularization problem as a soft-

ware clustering problem. These techniques try to construct a partitioning of

a set of entities (i.e., the module components) into a set of non-overlapping

groups (or clusters) such that a given criterion is optimized [And03]. For soft-

ware clustering, the criterion is usually a metric that resembles the cohesion of

the software system. Generally, an initial partitioning is chosen and then the

membership of the entities is changed in order to obtain a better partitioning.

This process is carried out iteratively until the given criterion is optimized.

The main problem faced by partitional algorithms is that even for a small

number of entities, there exists a large number of possible partitions, of which all

are assessed by the partitional algorithms. This makes the algorithms computa-

tionally very expensive, even more so for software clustering where the number

of entities may be very large. Another disadvantage of partitional algorithms is

the need to predetermine the ideal number of clusters. Since software systems

are widely varying in structure, such a predetermination is difficult.
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In [CS06], Czibula and Serban proposed and implemented a partitional tech-

nique for remodularizing software at the class-level. Although they provided a

heuristic for predetermining the number of clusters, their technique was found

to take high execution time.

Chatzigeorgiou et al. [CTS06] consider the software clustering problem as a

graph partitioning problem. They suggested a partitioning technique based on

spectral graph clustering, without any implementation. They mentioned that

the calculation of eigen vectors, a step performed in spectral graph clustering, is

an extremely expensive task (computationally), which might lead to prohibitive

run times if implemented on large software systems.

1.2.2 Optimization Techniques

In order to find good partitions quickly, optimization techniques were proposed,

which treat the graph partitioning problem as a search problem. The techniques

try to significantly reduce the search space of partitioning problems and search

for results such that a certain objective function/criterion is optimized.

An example is the work of Mancoridis et al. [MMR+98]. They deployed

optimization algorithms, like hill-climbing algorithms and genetic algorithms,

in order to find optimal partitions of software systems based on a cohesion

criterion. However, the algorithms are nondeterministic in nature as they don’t

yield the same result for every execution. This is because in each execution,

the algorithms begin with a random partition of the system and converge to a

local maximum. Moreover, not every initial partition of the system leads to an

optimal solution (in the perspective of the cohesion criterion). To overcome this,

Mitchell and Mancoridis [MM06] used an initial population of random partitions

on which they applied their technique. The random partitions led to different

results, from which the best result was ultimately chosen. Although increasing

the size of the population increased the probability of getting an optimal result,

it aggravated the overhead of their technique.

Similar to what was done in the previous work, Kata et al. [PHY11] used

a multi-objective optimization technique based on a genetic algorithm. In ad-

dition to the cohesion criterion, they introduced more objective functions for

their algorithm to optimize. The new objective functions correspond to other

quality parameters of software modules, such as function size, uniformity of

7



function size, etc. They showed that their technique gave better results than

the previous techniques for many examples. However, because their technique

considers more objective functions during each execution, their technique was

found to take much longer to run.

1.2.3 Hierarchical Clustering Techniques

Hierarchical clustering techniques have been widely used for cohesion-based soft-

ware restructuring. These techniques have been observed to work faster than

optimization techniques [LZN06]. Most hierarchical clustering techniques use

hierarchical agglomerative clustering algorithms (HACs) [AL99, AL03, LXZS06]

or algorithms based on HACs [SC08, AAM10, AAM11]. These algorithms and

the methodology by which they’re deployed for software restructuring are dis-

cussed in depth in Chapter 2.

HAC techniques give results in the form of clustering trees (or dendrograms),

for example like the one in Fig. 1.5. As shown in the figure, the dendrogram

represents a hierarchy of the entities (or components) of a software module,

where the vertical axis represents a scale of similarity, and the horizontal axis

indicates the set of components of the module. In order to obtain a partitioning

of the software module, the tree is sliced at different cut-points1, indicated by

the red, dashed horizontal lines in Fig. 1.5. Each cut-point returns a set of

clusters which are used to obtain the desired restructuring. Now, choosing the

appropriate cut-points is a difficult problem in clustering [AL99]. This problem

is of even greater significance in software clustering because not all cut-points

yield meaningful clusters.

The present hierarchical clustering techniques worsen the problem as they

generate clustering trees with many cut-points, which yield a large number of

redundant clusters. This clutters clustering trees, and makes it difficult to select

appropriate cut-points that would lead to a desired restructuring of the software

module.

Ways to solve the problem may be to pre-specify the cut-point height, or to

pre-specify the number of clusters in the desired remodularized version of the

module. However, software code can be widely varying in structure, which is

1The formal definitions of dendrograms, similarity, cut-points, and their significance in the

context of software restructuring are given in Chapter 2.
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Figure 1.5: A clustering tree or dendrogram of the components of a software

module.

why such pre-specifications are difficult to make. Serban and Czibula [SC08]

gave a heuristic for predetermining the number of clusters in the desired re-

structuring. However, their heuristic depends on a user defined threshold value.

In addition to that, their technique has been found to give unfavourable results

for many examples.

A reasonable and intuitive way to address this problem would be to design a

technique that generates clustering trees of software modules, where the number

of cut-points in the trees is reduced and the quality of the cut-points is improved

(i.e., the number of redundant clusters yielded by the cut-points is reduced).

However, no such technique has been developed yet.

1.3 Thesis Objectives

Building upon the problems faced by hierarchical clustering techniques men-

tioned in the previous subsection, we state our thesis goals as under,

• Create a new hierarchical clustering technique, called (k, w)-Core Clus-

tering ((k, w)-CC), that gives good suggestions for restructuring functions

written in Java. The technique gives better clustering trees, than those

generated by previous hierarchical clustering techniques, with compara-

ble efficiency. In particular, the technique gives clustering trees that have

cut-points of better quality, i.e., the total number of meaningless clusters
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returned by the cut-points is reduced. In addition to that, the technique

generates clustering trees with smaller number of cut-points.

• Give a characterization of clusters returned by cut-points in dendrograms,

in the context of software restructuring at the function-level.

• Give an experimental comparison of the results of our algorithm with

those of four previous hierarchical clustering algorithms (SLINK, CLINK,

WPGMA, and A-KNN). The following parameters are compared: exe-

cution time, number of cut-points and bad clusters generated, cohesion

improvement.

• Develop an easy-to-use software tool that allows the user to generate clus-

tering trees of functions using the technique developed in this thesis, and

the four previous techniques mentioned above.

1.4 Results Obtained

Based on our experiments, we have obtained the following results,

• Overall, (k, w)-CC generates 40.66%, 44.74%, 55.93%, 41.71% lesser num-

ber of cut-points than SLINK, CLINK, WPGMA, and A-KNN, respec-

tively.

• Overall, (k, w)-CC generates 65.01%, 66.32%, 70.72%, 62.98% lesser num-

ber of bad clusters than SLINK, CLINK, WPGMA, and A-KNN, respec-

tively.

• (k, w)-CC is faster by approximately 59.72% than SLINK, CLINK, and

WPGMA. However, A-KNN is the fastest; it is 94.77% faster than SLINK,

CLINK, and WPGMA.

• For most cases, the maximum cohesion improvement attained by all the

techniques, including (k, w)-CC are the same.
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1.5 Thesis Organization

The remaining part of this thesis is organized as follows: In Chapter 2, we

describe hierarchical clustering algorithms and explain how they are used for

restructuring software code. In the chapter, we also discuss the drawbacks of

the previous hierarchical clustering techniques. In Chapter 3, we explain the

new hierarchical clustering technique proposed in this thesis. In Chapter 4, we

give a characterization of cut-points in clustering trees of software functions.

In Chapter 5, we give an experimental comparison of the results of the new

technique with those of the previous techniques. We conclude our thesis in

Chapter 6, where we summarize the contributions of this work and give possible

directions for further research in this field.

In Appendix A, we present a new software restructuring tool, called Cohe-

sionOptimizer, giving basic guidelines on how to use the tool. In Appendix B,

the implementation code of the new clustering technique that was developed in

this thesis is provided.
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Chapter 2

Hierarchical Clustering

Techniques

In this chapter, we explain hierarchical clustering and its application in software

restructuring at the function-level. In Section 2.1, we give some preliminary def-

initions on clustering and hierarchical clustering. In Section 2.2, we explain the

four previous hierarchical clustering algorithms [LXZS06, AAM10] that have

been studied in this thesis. In Section 2.3, we describe the restructuring ap-

proach of [LXZS06, AAM10] in detail. Finally in Section 2.4, we discuss the

problems faced by those techniques.

2.1 Preliminaries on Clustering

In this section, we present some of the basic concepts of clustering, which are

used in this thesis.

Clustering is the process of organizing a set of entities into subsets or clus-

ters such that entities in the same cluster are in “some aspect” more similar to

each other than to those in different clusters [Eve74, Lak97]. A hierarchical clus-

tering algorithm outputs a hierarchy of clustered entities, as shown in Fig. 2.1.

Hierarchical clustering algorithms are of two types: divisive and agglomerative.

Divisive algorithms. Also known as top-down clustering algorithms, these

algorithms begin the clustering process by considering all the entities to exist

in one cluster, and then iteratively split the cluster into smaller clusters based
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entities clusters

Figure 2.1: A hierarchy of clusters of a set of entities.

on some criteria. The process continues until all entities belong to separate

individual clusters. Divisive algorithms suffer from excessive computational

complexity, as there is an exponential number of ways to separate the clusters

at every step [Tze01]. This is the main reason why these algorithms are not

generally used for clustering.

Agglomerative algorithms. Also known as bottom-up clustering algorithms,

these algorithms begin the clustering process by considering each entity to be-

long to a unique cluster. The process then continues by iteratively merging the

closest cluster pairs until all entities belong to a single cluster. Hierarchical

agglomerative clustering algorithms (HACs) have found much greater applica-

tion than hierarchical divisive clustering algorithms [Tze01, MRS08, TSK09].

In Section 2.2, we explain HACs in greater detail and mention four previous

HACs that have been used for software restructuring.

A common way to visualize the outputs of HACs is through clustering trees

or dendrograms (see Fig. 2.2). A dendrogram is a two-dimensional diagram, in

which a scale of similarity from 1 to 0 is represented in the vertical axis and the

entities are indicated in the horizontal axis. The similarity quantitatively shows

the extent to which the entities are similar. In the diagram, each horizontal line

indicates a cluster, the height of which indicates the level of similarity of the

cluster components (which can be entities or smaller clusters). Each cluster in

the dendrogram, except the one which consists of all the entities, contributes

13



to a cut-point . A cut-point is the level of similarity at which a dendrogram

can be cut in order to obtain a unique partition of entities. Clusters with the

same level of similarity correspond to the same cut-point. The cut-points of the

dendrogram in Fig. 2.2 are indicated by the red-dashed lines in Fig. 2.3.
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1 2 3 5 6 84 7
Entities

Figure 2.2: A dendrogram.
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Figure 2.3: A dendrogram with cut-points.

Similarity values between entities are calculated using a metric which con-

siders the various attributes that are common between the entities. The choice

of metric depends on what the entities represent. For software restructuring at

the function-level, the similarity metric is presented in Section 2.3. The manner

in which the similarity values between the resulting clusters are calculated is

what differentiates one HAC from another. Consequently, each HAC generates

a different clustering and thus, a different dendrogram for the same set of en-

tities. We now explore four HACs (SLINK, CLINK, WPGMA, and A-KNN)

that have been previously used for software restructuring.
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2.2 HACs

In this section, we first explain the basic mechanism of hierarchical agglomer-

ative clustering algorithms. Then we explain four previous hierarchical clus-

tering algorithms that were previously used for software restructuring; SLINK,

CLINK, and WPGMA are explained in Subsection 2.2.1 and A-KNN is ex-

plained in Subsection 2.2.2.

Algorithm 1 shows the basic steps of any hierarchical agglomerative clus-

tering algorithm (HAC). The algorithm finds a hierarchical clustering of a set

of entities. As mentioned earlier, at the start each entity is assigned a sepa-

rate cluster, which is termed as a singleton cluster. The algorithm proceeds

as follows. In Step 1, a similarity matrix is calculated. The similarity matrix

consists of similarity values (or resemblance values) for each pair of entities.

The values are calculated using a formula known as the resemblance coefficient .

The resemblance coefficient is application-specific and thus depends on what

the entities signify in real-life. (One such coefficient is used for software restruc-

turing, which is discussed later in Section 2.3.) The algorithm then enters a

loop in Step 2, and repeatedly executes Steps 3 and 4. In Step 3, it merges

a pair of clusters that have the highest similarity among all similarity values

in the similarity matrix. Thus, a new cluster is formed by the merge. In Step

4, the algorithm recomputes the similarity values between the newly formed

cluster and the other clusters. Steps 3 and 4 are repeated until all entities are

in a single cluster, as specified in Step 5.

Algorithm 1 Basic hierarchical agglomerative clustering (HAC) algorithm.

1: Compute the similarity matrix

2: repeat

3: Merge the closest two clusters

4: Update the similarity matrix to show the similarity between the new

cluster and the original clusters.

5: until Only one cluster remains.

The way in which the similarity between two clusters is calculated differen-

tiates different HACs.
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2.2.1 SLINK, CLINK, WPGMA

Single Linkage Algorithm (SLINK), Complete Linkage Algorithm (CLINK), and

Weighted Pair Group Method of Arithmetic Averages (WPGMA) directly follow

the steps of Algorithm 1. Their distinguishing feature is the way in which

they calculate the similarity of two clusters, which is carried out in Step 4 of

Algorithm 1. The differences can be illustrated as shown in Fig. 2.4. Each

diagram of the figure consists of a pair of clusters consisting of entities. The

entities are drawn in a Euclidean plane where the Euclidean distance between

the entities is proportional to the dissimilarity between the entities. Thus, the

greater the similarity between the entities, the smaller is the distance between

them in the diagram.
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Figure 2.4: Cluster similarity in (a) SLINK, (b) CLINK, (c) WPGMA.

SLINK (Fig. 2.4(a)) defines cluster similarity as the similarity between the

closest pair of entities, taking one from each cluster. CLINK (Fig. 2.4(b)) de-

fines cluster similarity as the similarity between the farthest pair of entities,

taking one from each cluster. WPGMA (Fig. 2.4(c)) defines cluster similarity

as the average pairwise similarity between all pairs of entities from different

clusters. Based on these notions of similarity the three algorithms merge clus-

ters, repeatedly, until all entities become part of a single cluster. The output is

a hierarchy of clusters.
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2.2.2 A-KNN

The Adaptive K-Nearest Neighbour Algorithm (A-KNN) was introduced by

Alkhalid et al. [AAM10]. Although A-KNN does not directly follow the conven-

tional mechanism of an HAC, like HACs it also generates a hierarchical cluster-

ing of entities starting from singleton clusters. A-KNN is based on the idea of the

K-Nearest Neighbour (KNN) algorithm introduced by Fix and Hodges [FH89].

The approach of KNN is to classify an entity based on the majority classifica-

tions of its nearest k-neighbours. Alkhalid et al. proposed a modified version of

the KNN algorithm for k=3. Algorithm 2 shows the steps. The algorithm uses

labels to indicate the cluster to which an entity belongs. So, for example, if,

L(A)=L(B), then entities A and B belong to the same cluster. We now explain

the steps of the algorithm in detail.

In Step 1, each entity is assigned a unique cluster indicated by distinct

labels. Step 2 computes the similarity matrix, just as was done in Step 2 of

Algorithm 1. In Step 3, the algorithm enters a loop (Steps 3 to 14). In Step

4, it finds the closest three pairs of entities, {Ea, Eb}, {Ec, Ed}, and {Ee, Ef}.
In the remaining steps of the loop (Steps 5 to 13), the algorithm checks a set

of conditions in order to decide with which entity’s cluster will the cluster of

entity Ea be merged. A number of cases may arise. The first case corresponds

to entities Ea, Ec, Ee having the same label, i.e., are in the same cluster (Step

5). There may be two situations in this case. First, Ea’s farthest two neighbours

among its three closest neighbours (i.e., Ed and Ef ) have the same label. In

this situation, the algorithm labels Ea with that of Ed (Step 7), merging the

corresponding clusters of the respective entities. Second, the three neighbouring

entities may all have different labels. In this situation, Ea’s cluster is merged

with that of its closest neighbour, Eb (Step 9). The last case corresponds to

Ea, Ec, Ee all having different labels. In this case Ea’s cluster is merged with

that of Eb (Step 12). The algorithm repeatedly carries out Steps 3-14 until all

entities have the same label and therefore are in the same cluster.

In their algorithm, each new cluster that is formed by merging a pair of

clusters is assigned a similarity value equal to that between the closest pair of

entities, taking one from each cluster. The output of the algorithm, like that of
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the three previous HACs, is a hierarchy of clusters.

The key difference between A-KNN and the previous HACs (SLINK, CLINK,

WPGMA) is that A-KNN performs the computation of the similarity matrix

only once, whereas, the latter do it at every iteration. A-KNN is thus, more

efficient than SLINK, CLINK, and WPGMA. Consequently, it was found to

execute faster when it was implemented for restructuring software.

Algorithm 2 A-KNN algorithm for K=3.

1: Assign each entity i to a single cluster Ei and label each cluster uniquely.

(Let L(A) be the label of cluster A. Then initially L(Ei) ̸= L(Ej), ∀
i, j ϵ {1, .., n} s.t i ̸= j, where n is the no. of entities.)

2: Compute the similarity matrix

3: repeat

4: Find the most similar three pairs of entities, {Ea, Eb}, {Ec, Ed}, {Ee, Ef},
s.t Sim(Ea, Eb) ≥ Sim(Ec, Ed) ≥ Sim(Ee, Ef ), where Sim(A,B) = simi-

larity value for the pair of entities A and B)

5: if L(Ea) = L(Ec) = L(Ee) then

6: if L(Ed) = L(Ef ) then

7: L(Ea)← L(Ed) //merge clusters of Ea and Ee

8: else

9: L(Ea)← L(Eb) //merge clusters of Ea and Eb

10: end if

11: else

12: L(Ea)← L(Eb) //merge clusters of Ea and Eb

13: end if

14: until All entities have the same label.

2.3 Restructuring Approach

In this section, we see how the algorithms discussed in Section 2.2 are utilized for

restructuring software at the function-level, as was done in [LXZS06], [AAM10].

The three phases of the approach, “Entity-Attribute Matrix Generation”, “Sim-

ilarity Matrix Generation”, “Applying Clustering Algorithms” are discussed in
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Subsections 2.3.1, 2.3.2, and 2.3.3 respectively.

The overall framework of the restructuring approach is depicted in Fig. 2.5.

The technique basically takes a function as input and returns a dendrogram

showing a hierarchical representation of the function’s entities. Three phases

are adopted to carry out this process. In the first phase, “Entity-Attribute

Matrix Generation” (Subsection 2.3.1), the presence state of attributes in the

entities of the function is noted and stored in a matrix. In the next phase,

“Similarity Matrix Generation” (Subsection 2.3.2), similarity values between

each pair of entities of the function are calculated based on information pro-

vided by the matrix obtained in the previous phase. The output of this phase

is a similarity matrix. In the final phase, “Applying Clustering Algorithms”

(Subsection 2.3.3), different clustering algorithms are applied on the similar-

ity matrix and cluster hierarchies of the entities are generated. The cluster

hierarchies are viewed in the form of a dendrogram, which gives restructuring

suggestions for the input function. We now explain each of these phases in

detail.
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Similarity Matrix

Algorithms
Applying Clustering

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
���� DendrogramFunction

Generation
Entity−Attribute Matrix

Figure 2.5: Overall approach for restructuring software at the function-level

using hierarchical clustering techniques.
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2.3.1 Entity-Attribute Matrix Generation

Before explaining this phase it is necessary to define specifically what entities

and attributes of a function represent and elaborate on the different types of

entities and attributes. All definitions are based on the terminology of Lung et

al. [LXZS06].

Entities and Attributes

Entities. These resemble components, i.e., statements, of a function which are

to be grouped by the restructuring process. There can be two types of state-

ments: non-executable and executable. Non-executable statements include, dec-

laration and comment statements, which, as mentioned in [LXZS06], “have no

real effect on the functionality provided by the function”, and hence are not

selected as entities. Executable statements have a direct effect on the function-

ality of a function. They include assignment statements, condition statements

(e.g., if and else LOCs), loop statements (e.g., while and for statements). Only

executable statements are chosen as entities.

Entities are classified into two groups: control entities and non-control en-

tities. A control entity is an entity which corresponds to a condition/loop

statement (e.g., if, else, elseif, for, while statements or try, catch statements in

Java). If an entity is not a control entity then it is a non-control entity (e.g.,

assignment statements, function call statements).

Attributes. An attribute is a feature or a property of an entity. Entities

are grouped on the basis of the number of attributes they share. An entity

may have many properties such as variables, constants, operators, keywords,

brackets, function names (in function call statements). Since the objective of

cohesion-based restructuring is to group entities of the function on the basis of

the task they perform, only those properties which are related to a functional

activity are chosen as attributes. In the context of function-level restructuring,

only variable names and function names fulfil this criterion, and hence qualify

as attributes. Constants, operators, and keywords do not fulfil this criterion,

and thus are discarded. In this regard, loop variables are also not chosen as

attributes. This is because restructuring is done on the basis of the static

structure of the function and hence the number of times a loop body runs is
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insignificant.

Attributes selected using the above criteria (variable names and function

names) reveal data dependency relationships among entities and hence are clas-

sified as data attributes . In order to obtain control dependency relationships,

new attributes are artificially added to the entities. These attributes are called

control attributes . Entities that belong to the same control block in the source

code (e.g., if block), are assigned the same control entity.

Before the start of the restructuring process, relevant entities (i.e., exe-

cutable statements) are extracted from the function and an entity-set is cre-

ated. Similarly, data attributes are extracted from the function and control at-

tributes are added as necessary. All the attributes constitute the attribute-set.

(The attribute selection criteria used in our restructuring process, explained in

Chapter 3, differs from the attribute selection criteria of Lung et al. [LXZS06].

Therefore, in order to distinguish our attribute selection criteria from their

criteria, we refer to our attribute extraction as “Selective”, and Lung et al.’s

attribute extraction as “Normal”.) We now explain the construction of the

entity-attribute matrix.

Entity-Attribute Matrix Construction

The entity-attribute matrix shows the presence states of attributes in each entity

of the function. Fig. 2.6 shows the structure of the entity-attribute matrix. All

attributes from the attribute-set are shown horizontally in the header of the

matrix. Each row corresponds to an entity from the entity-set and indicates

the presence states of attributes in the particular entity. Each cell, (i, j) (where

i, the row number, refers to an entity, and j, the column number, refers to an

attribute), of the matrix can have three values, 0, 1, or 2, which are described

below,

0 - attribute j is absent in entity i,

1 - attribute j is present in entity i, where,

i. attribute j is a control attribute or,

ii. attribute j is a data attribute and entity i is a control entity,

2 - attribute j is present in entity i, where attribute j is a data attribute
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and entity i is a non-control entity.
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Figure 2.6: Entity-attribute matrix.

0 void sum and prod(int n, int[] arr) {
1 sum = 0;

2 prod = 1;

3 for ( int i = 1 ; i < n ; i ++ )

4 {
5 sum = sum + arr [ i ] ;

6 prod = prod * arr [ i ] ;

7 }
8 avg = sum / n ;

9 }

Figure 2.7: sum prod function with each line enumerated.

Let us now see an example where we restructure the sum prod function that

was shown earlier in Fig. 1.1, Chapter 1. Fig. 2.7 shows the function with each

statement (entity) of the function enumerated and Fig. 2.8 shows the entity-

attribute matrix for the function. As can be seen, only the relevant entities

and attributes are included in the entity-attribute matrix. The values of the

matrix are based on the presence state of the attributes in the entities. For

example, variable sum exists as a data attribute in entities 1, 5, 8. Therefore,

the cells corresponding to these entities, under the sum column, are assigned

the value ‘2’. The remaining cells of this column are assigned ‘0’. Variable n

is present as a data attribute in entities 3 and 8. Since entity 3 is a control

statement, the cell corresponding to entity 3, under n’s column, is assigned ‘1’.

The cell corresponding to entity 8 in this column is assigned ‘2’ as usual. The

for attribute is the extra control attribute that has been added to indicate the
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control dependency relationship among the entities. The cells of all entities,

which are inside the for block of the function, are assigned ‘1’ under the for

column.

In this manner, the restructuring technique generates the entity-attribute

matrix for any input function. From the entity-attribute matrix, useful infor-

mation about the similarities between the entities is obtained and processed

for suitable quantitative representations. This is done in the next phase of the

restructuring process.

Entity Attributes

No. n arr sum prod avg for

1 0 0 2 0 0 0

2 0 0 0 2 0 0

3 1 0 0 0 0 1

5 0 2 2 0 0 1

6 0 2 0 2 0 1

8 2 0 2 0 2 0

Figure 2.8: Entity-attribute matrix of sum prod function.

2.3.2 Similarity Matrix Generation

This phase generates a similarity matrix from the information provided by the

entity-attribute matrix generated in the previous phase. Fig. 2.9 shows the

structure of a similarity matrix. The similarity matrix consists of similarity

values for each pair of entities.

E
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es

Entities

Figure 2.9: Similarity matrix.
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The similarity values give a quantitative measure of the similarity that exists

between each pair of entities. The values are calculated using a formula based

on the Jaccard coefficient of similarity [AL99], which is given as under,

Sim(A,B) =
a

a+ b+ c
,

where,

Sim(A,B) is the similarity between entities A and B,

a is the number of common attributes among A and B,

b is the number of attributes present in A but not in B,

c is the number of attributes present in B but not in A.

Based on the above, Lung et al. [LXZS06] used a new metric to calculate the

similarity between two entities. The metric is based on attribute match count

information of entity-pairs, which is obtained from the entity-attribute matrix.

We first explain the different matches that can be obtained between two entities

from the entity-attribute matrix.

1-1 matches. A 1-1 match either indicates that two entities have the same

control attribute, i.e., have a control dependency relationship, or two control

entities have the same data attribute.

2-2 matches. A 2-2 match indicates that two non-control entities have the same

data attribute, i.e., have a data dependency relationship.

1-0/0-1 matches. A 1-0/0-1 match indicates either a mismatch between two non-

control entities, where a control attribute is present in one entity and absent in

the other, or a mismatch between two control entities, where a data attribute

is present in one entity and absent in the other.

2-0/0-2 matches. A 2-0/0-2 match indicates a mismatch between two non-

control entities, where a data attribute is present in one entity and absent in

the other.

0-0 matches. A 0-0 match indicates that an attribute is present in neither

of the two entities. The similarity of two entities is not affected by adding

attributes to other entities of a function [LXZS06], because the absence of an

attribute in a pair of entities does not convey any information regarding the

similarity/dissimilarity between the entities. Moreover, since there can be many

attributes used in a function, it is likely that a pair of entities may not have
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many of those attributes and thus may have many 0-0 matches. It has been

shown that considering such matches would distort clustering results [AL03].

0-0 matches are thus ignored.

1-2/2-1 matches. A 1-2/2-1 match occurs between a control entity and a non-

control entity where both have the same data attribute. There can be two

scenarios for such type of matches. The first is that, the two entities are in the

same control block. In this case, there already exists a 1-1 match between these

two entities that considers their control dependency relationship, and thus there

is no need to note it again with a 2-1 match. The other scenario is that the

two entities are not in the same control block, in other words, the non-control

entity is outside the control block. In this case, there is no control dependence

between the entities. Therefore, 1-2/2-1 matches are ignored.

Lung et al. constructed an entity-pair similarity metric, known as the resem-

blance coefficient , which is based on the Jaccard coefficient described earlier.

The resemblance coefficient uses match count information of 1-1, 2-2, 1-0/0-1,

and 2-0/0-2 matches between any pair of entities. 0-0 and 1-2/2-1 matches are

not considered. The formula is given as under,

coeff (A,B) =
wdad + wcac

wdad + wcac + wdbd + wcbc
,

where,

coeff (A,B) is the resemblance coefficient or similarity value for

entity pair (A,B) that varies from 0 to 1,

ad is the number of 2-2 matches between entities A and B,

ac is the number of 1-1 matches between entities A and B,

bd is the number of 2-0/0-2 matches between entities A and B,

bc is the number of 1-0/0-1 matches between entities A and B,

wd is the weight of data attributes,

wc is the weight of control attributes,

wd > wc > 0.

As can be seen the resemblance coefficient, unlike the Jaccard coefficient,

distinguishes between control attributes and data attributes in order to distin-

guish between data and control dependency relationships. This differentiation

is made because two variables that have a data dependency relationship are
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more cohesive than two variables that have only a control dependency relation-

ship [Lak93]. As a result, more weight is assigned to data attributes than to

control attributes. The weights are specified by weight parameters wd and wc.

Different weight ratios (3:1, 5:2, 8:3) were used for restructuring functions in

previous works. A weight ratio of 8:3 was found to give the most consistent

restructuring results and was chosen by Lung et al. [LXZS06].

We now return to our example of restructuring the sum prod function in

Fig. 2.7. By using the resemblance coefficient and the match count information,

obtained from the function’s entity-attribute matrix (see Fig. 2.8), similarity

values for each pair of entities of the function is computed. Below we show

the calculation of the similarity value for entity pair (3, 5) using weights wd=8,

wc=3,

From the entity-attribute matrix, we see that for entities 3 and 5, ad=0, ac=1,

bd=2, and bc = 1. Therefore,

coeff (3,5) =
8 ∗ 0 + 3 ∗ 1

8 ∗ 0 + 3 ∗ 1 + 8 ∗ 2 + 3 ∗ 1

≃ 0.14

In similar fashion, the similarity values for all the other entity-pairs are cal-

culated. The results constitute the cells of the similarity matrix, as shown in

Fig. 2.10. All calculations were made using the weight ratio of 8:3 for wd:wc.

1 2 3 5 6 8

1 0 0 0 0.42 0 0.33

2 0 0 0 0 0.42 0

3 0 0 0 0.14 0.14 0

5 0.42 0 0.14 0 0.41 0.23

6 0 0.42 0.14 0.41 0 0

8 0.33 0 0 0.23 0 0

Figure 2.10: Similarity matrix of sum prod function.
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2.3.3 Applying Clustering Algorithms

Once the similarity matrix of a function is generated, HAC algorithms are di-

rectly applied on the matrix in the manner explained in Section 2.2. A hierarchy

of entities is returned as the output. The hierarchy is visually represented as

a dendrogram. As was mentioned earlier in Section 2.1, a dendrogram gives

suggestions on how to partition the set of entities. The suggestions are given

in the form of cut-points. Since each clustering algorithm returns a different

clustering of the entities, the corresponding dendrograms returned by the algo-

rithms also differ from one another, and hence give different cut-points. It is

entirely for the developer to decide which cut-point(s) to choose for performing

the restructuring. Factors that would influence the developer’s decision include

the restructuring objective (which in this case is to increase cohesion), the de-

veloper’s experience and programming knowledge, etc. We now demonstrate

how the restructuring process is carried out with the aid of a dendrogram.

Fig. 2.11 shows the sum prod function and its corresponding dendrogram

generated when the WPGMA algorithm is applied on the similarity matrix

(Fig. 2.10) of the function. On analyzing the dendrogram, we see that it gives

three cut-points, C1, C2, and C3.

C1 yields the partition {(6,2,3),(8,5,1)}, of which one cluster consists of

all entities1 of the function that deal with the prod variable, and the other

cluster contains those that deal with the sum variable. The two clusters suc-

cessfully identify the two tasks carried out by the function (resembled by sum

and prod variables) and suggest each to be on separate functions. Since the

goal of cohesion-based restructuring is to rewrite a function into separate func-

tions where each function performs a unique task, this cut-point clearly yields

suggestions that would lead to a desired restructuring (shown in Fig. 1.2, in

Chapter 1). Note that entity 3 is a control entity (a for statement) that must

exist with both entity 5 and entity 6. However, it was not included with entity

5 in cluster (8,5,1). Thus, in this cluster, entity 5 has an implicit control depen-

dence with entity 3. Implicit control dependencies can be easily detected by the

programmer and can accordingly be retained in the restructured version even

without the dendrogram’s assistance. Since cluster (8,5,1) correctly groups a

1Entities refer to the executable statements of the function (see Subsection 2.3.1).
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unique task of the function (resembled by the sum attribute usages), it is not a

redundant cluster. (The properties of redundant clusters are elaborated upon

in Chapter 4.)

C2 yields the partition {(3),(6,2),(8,5,1)} of which the latter two clusters

lead to the desired restructuring. Singleton cluster (3) is discarded. Singleton

clusters do not give any grouping information and so do not give any advice on

restructuring. Thus, all singleton clusters are ignored during the analysis.

C3 yields the partition {(6,2),3,8,(5,1)}. This partition gives two groups of

entities, (6,2) and (5,1). Cluster (6,2) groups all the entities that use prod,

whereas cluster (5,1) does not include all the entities that use sum. In the

context of this program, it is meaningless to keep entity 8 separate from entities

5 and 1 because doing so would imply either keeping entity 8 with entities 6

and 2, in case we were not to devote a separate function for entities 6 and 2, or

keeping entity 8 alone in a separate function. Both these versions are impractical

as one suggests keeping entity 8 with entities which have no relation to it, and

the other suggests a function with a single entity. Therefore, cluster (5,1) is a

redundant cluster.

0 void sum and prod(int n, int[] arr) {
1 sum = 0;

2 prod = 1;

3 for ( int i = 1 ; i < n ; i ++ )

4 {
5 sum = sum + arr [ i ] ;

6 prod = prod * arr [ i ] ;

7 }
8 avg = sum / n ;

9 }
(a) (b)

Figure 2.11: (a) sum prod function, and (b) its corresponding dendrogram (with

cut-points) obtained by WPGMA algorithm.

2.4 Discussion on the Problems Faced

In this section, we elaborate on the problems faced by the previous hierarchical

clustering techniques. In Subsection 2.4.2, we explain why the problems occur,
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and in Subsection 2.4.3, we propose ways to address the problems.

2.4.1 The Problems

When implemented on functions, SLINK, CLINK, WPGMA, and A-KNN give

dendrograms with the following properties,

Large number of cut-points. A greater number of cut-points clutters the

dendrogram and makes it increasingly difficult for the developer to choose the

appropriate cut-point(s) that lead to the desired restructuring.

Large number of redundant clusters. The cut-points return a large number

of redundant clusters, i.e., clusters that do not lead to a meaningful restructuring

of the function. Analyzing such clusters wastes precious time of the developer

while he/she uses the clustering results to obtain a restructuring of the function.

Clearly, a dendrogram that gives a smaller number of cut-points that return

a smaller number of redundant clusters is desirable.

2.4.2 Causes of the Problem

We identify the main reason behind the problems of the previous HACs, men-

tioned in Subsection 2.4.1, as the fact that they generate hierarchies with a

large number of small clusters. Since each cluster in a hierarchy contributes

to a cut-point in the corresponding dendrogram, the dendrogram would have a

large number of cut-points. Consequently, when these cut-points are analyzed,

many of them yield small clusters. In practice, it has been found that such

clusters, because of their limited sizes, tend to leave out many related entities

and as a result are likely to lead to a meaningless restructuring. For example, as

elicited earlier, cut-point C3 in Fig. 2.11 yields a cluster (5,1), which was found

to be meaningless. Although the cluster successfully detects the sum attribute

relationship between entities 5 and 1, it does not include entity 8 - an entity

which also deals with the sum attribute. The larger cluster (1,5,8), produced

by the other two cut-points, encompasses all the three related entities.

There are two factors in the mechanisms of the previous HAC techniques that

contribute to the generation of small clusters. One factor is that their technique

is based on merging clusters pairwise (see Algorithms 1, 2 in Section 2.2). This
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means at every iteration only two clusters are merged to form a new cluster.

The other factor that contributes to the generation of small clusters is that they

only consider cluster/entity similarities when making the merge decisions. In

doing so, they limit their merging decisions to only a single aspect of the entities’

interrelationships, while discarding other aspects which may be present.

2.4.3 A Solution to the Problem

In order to reduce the number of cut-points in dendrograms and improve the

quality of those cut-points (i.e., reduce the number of redundant clusters in cut-

points), a hierarchical clustering technique that generates larger clusters could

be used. Moreover, since software functions can be of varying design, it would

be of utmost significance if the technique generates larger clusters intuitively.

In other words, the technique should not require the user to predetermine any

value on the minimum cluster size or the number of clusters. This objective may

be fulfilled if the technique considers other structural properties of the entities

in addition to their inter-similarities. In this thesis, we have developed such a

technique, which is explained in the next chapter.
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Chapter 3

Restructuring Using the

Proposed Clustering Technique

In this chapter, we present a new hierarchical clustering technique, (k, w)-Core

Clustering ((k, w)-CC), for restructuring software at the function-level. Since

the new technique is based on (k, w)-core decomposition, a graph theoretic al-

gorithm, we first give some basic graph definitions in Section 3.1. Then in

Section 3.2, we explain (k, w)-CC. Finally, in Section 3.3, we propose a mod-

ified attribute selection strategy for (k, w)-CC instead of the one discussed in

Subsection 2.3.1 of Section 2.3.

3.1 Graph Theory Definitions

In this section, we present some basic graph concepts which will be required

to understand (k, w)-CC. In Subsection 3.1.1, we give definitions of standard

graph-theoretical terms. In Subsection 3.1.2, we explain the concepts of k-cores

and (k, w)-cores.

3.1.1 Graphs

A graph G is a tuple (V,E), which consists of a finite set V of vertices and a

finite set E of edges; each edge is an unordered pair of vertices [NR04].

Fig. 3.1 depicts a graph G = (V,E) where each vertex in V = {v1, v2, . . . , v6}
is denoted by a small circle and each edge in E = {e1, e2, . . . , e9} is denoted by

a line segment. An edge joining two vertices u and v of the graph G = (V,E)
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Figure 3.1: A graph with six vertices and nine edges.

can be denoted by (u, v) or simply by uv. If uv ∈ E, then the two vertices u and

v of the graph G are said to be adjacent; the edge uv is then said to be incident

to the vertices u and v; also the vertex u is said to be a neighbour of the vertex

v (and vice versa). The degree of a vertex v in G, denoted by d(v) or degG(v), is

the number of edges incident to v in G. In the graph shown in Fig. 3.1, vertices

v1 and v2 are adjacent, and d(v6) = 3, since three edges (e5, e6, e7) are incident

to v6.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V

and E ′ ⊆ E. If G′ contains all the edges of G that join vertices in V ′, then G′

is called the subgraph induced by V ′.

A weighted graph is a graph where a real value is associated with each edge

of the graph.

A graph can be connected or disconnected. A graph G is connected if for

any two distinct vertices u and v of G, there is a path between u and v. A

graph which is not connected is called a disconnected graph.

A (connected) component of a graph is a maximal connected subgraph. The

graph in Fig. 3.2(a) is a connected graph since there is a path between every pair

of distinct vertices of the graph. On the other hand, the graph in Fig. 3.2(b) is

a disconnected graph since there is no path between, say, v1 and v5. The graph

in Fig. 3.2(b) has two connected components as indicated by the dotted lines.

Note that every connected graph has only one component; the graph itself.
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Figure 3.2: (a) A connected graph, (b) A disconnected graph with two connected

components.

3.1.2 k-cores

We now give the definitions of two key elements of the (k, w)-CC technique: the

k-core, first introduced by Seidman [Sei83], and the (k, w)-core introduced in

this thesis.

Definition 3.1.1. k-core. Let G = (V,E), be a graph, where V is the set of

vertices and E is the set of edges. A subgraph Hk of G induced by a vertex set

V ′⊆V is a k-core of G if every vertex in V ′ has degree at least k in Hk, and Hk

is the maximum subgraph with this property [BZ03].

1−core

2−core

3−core

Figure 3.3: k-cores of a graph, G.

Fig. 3.3 indicates all the k-cores of G. We now present the following lemma,

Lemma 3.1.1 If Hk1, Hk2 are the k1- and k2-cores, respectively, of a graph G,

where k2 > k1, then Hk2 is a subgraph of Hk1.
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Proof. (Proof by Contradiction.) Let us assume that Hk1 , Hk2 are the k1-

and k2-cores, respectively, of a graph G, such that k2 > k1. Suppose that Hk2

is not a subgraph of Hk1 .

By the definition of k-core, each vertex in Hk1 has a degree of at least k1, and

each vertex in Hk2 has a degree of at least k2. As k2 > k1, then clearly each

vertex in Hk2 has a degree > k1. Thus, we have two subgraphs, Hk1 , Hk2 where

each vertex of the subgraphs has degree ≥ k1. Since Hk2 is not a subgraph of

Hk1 , then Hk1 is not the maximum subgraph in which all vertices have degree

greater than or equal to k1. Thus, Hk1 is not a k1-core which is contradictory

to what we had assumed. Therefore, Hk2 must be a subgraph of Hk1 .

Q.E .D.

For our purpose we shall deal with weighted graphs. As was mentioned

earlier, a real value is associated with each edge of a weighted graph. We

introduce the notion of (k, w)-cores and present a lemma in this regard.

Definition 3.1.2. (k, w)-core. Let W be the set of different edge weights of

graph G, where w∈W . Then a (k, w)-core of G is a subgraph of G where the

degree of each vertex of the subgraph is at least k and the weight of each edge of

the subgraph is at least w, and this subgraph is the maximum subgraph with this

property.
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Figure 3.4: (a) A weighted graph G′, (b) A (2, 2)-core of G.

Fig. 3.4 indicates the (2, 2)-core of G′. We now present the following lemma,

Lemma 3.1.2 A (k, w)-core of a weighted graph, G, is a subgraph of a k-core

of G.
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Proof. (Proof by Contradiction.) Let us assume that Hk1 , Hk1,w1 are the

k1- and (k1, w1)-cores, respectively, of a graph G. Suppose that Hk1,w1 is not a

subgraph of Hk1 .

By the definitions of k-core and (k, w)-core, each vertex in Hk1 and Hk1,w1 has

degree≥ k1. SinceHk1,w1 is not a subgraph ofHk1 , thenHk1 is not the maximum

subgraph in which all vertices have degree greater than or equal to k1. Thus,

Hk1 is not a k1-core which is contradictory to what we had assumed. Therefore,

Hk1,w1 must be a subgraph of Hk1 .

Q.E .D.

3.2 (k, w)-Core Clustering

In this section, we explain the new hierarchical clustering technique, (k, w)-

Core Clustering ((k, w)-CC), that was introduced in this thesis. In order to

implement our technique for software restructuring, we follow the restructuring

approach explained in Section 2.3. In Subsections 3.2.1, 3.2.2, and 3.2.3, we

describe the three main phases of our technique. In Subsection 3.2.4, we present

a time complexity analysis of our entire technique.

Similarity
Matrix Graph

Weighted
Hierarchy
Cluster

(a) (b) (c)

(k,w)−cores

Figure 3.5: Overall approach of (k, w)-CC.

Fig. 3.5 illustrates the overall approach of (k, w)-Core Clustering. In the

first step (Fig. 3.5(a)), a weighted graph is realised from the similarity matrix

(which was obtained from the “Similarity Matrix Generation” phase). In the

next step (Fig. 3.5(b)), all possible (k, w)-cores are generated from the weighted

graph. In the final step of the approach (Fig. 3.5(c)), cores are systematically

selected to form clusters, which together form a cluster hierarchy. Each of the

steps are discussed in the following subsections.
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3.2.1 Graph Generation

In this phase, a graph is obtained from the similarity matrix. Like the previous

HACs, (k, w)-CC also takes the similarity matrix as an input. However, since

it is a graph theoretic technique, it works on weighted graphs. A weighted

graph is conveniently obtained from the similarity matrix, which serves as an

adjacency matrix for the graph. In the graph, vertices represent entities, and

edges incident to the vertices represent the presence of non-zero similarities

between the corresponding entities. Each edge carries a weight equal to the

similarity value between the corresponding entities.

3.2.2 Core Decomposition

This step comprises of generating all the (k, w)-cores of the graph obtained in

the previous step. To carry this out, we developed new core decomposition

algorithms. The basic idea of our approach is to first generate all the k-cores

of the graph. Then from the k-cores we generate all the (k, w)-cores from the

graph.

k-core Decomposition

Batagelj et al. [BZ03] gave an implementation for generating all the k-cores of

a graph. The basic property of their algorithm is: if from a given graph G we

recursively delete all vertices, and edges incident to them, of degree less than k,

the remaining graph is the k-core of G. Based on this property, we developed

algorithms for generating all k-cores and all (k, w)-cores of a graph.

Algorithm 3 shows the steps for generating all the k-cores of a weighted

graph G(V,E), where k belongs to the sorted set (in ascending order), D, of

distinct degrees of the vertices of G. The algorithm takes input G in P (Step 1)

and scans every vertex v of VP to find the k-core for the smallest kϵD. In each

iteration, if the degree of a vertex v, degP (v), is found to be below k, v is deleted

(Steps 4-7) and the degrees of vertices adjacent to v in P are decremented using

the update function in Algorithm 4 (Steps 2, 3 in Algorithm 4). In case the

degrees of any of v’s adjacent vertices, NP (v), fall below k as a result of the

decrements, those vertices are deleted and the update function is recursively

called again (Steps 4-7 in Algorithm 4). In this manner, the first k-core is
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generated (Step 9, Algorithm 3). For generating the k-core for the next value of

k in ordered set D, it is sufficient to analyze the last k-core that was generated

instead of the entire graph G (see Lemma 3.1.1). Thus, at every stage, each

k-core that is generated is again fed into Steps 3-8 of Algorithm 3 to obtain the

next k-core. This process continues until the k-core for the largest value of kϵD

has been generated.

Algorithm 3 Generating all k-cores of weighted graph, G(V,E)

1: P (VP , EP )← G(V,E) //Input

2: for each degree value k in D do

3: for each vertex v in VP do

4: if degP (v) < k then

5: degP (v) ← 0

6: update(v, k, P ) //Completes deletion of v in P (Algorithm 4)

7: end if

8: end for

9: Hk ← P (VP , EP )

10: return Hk

11: end for

Algorithm 4 Update connected vertices
1: update(v, k, P )

{
2: for each vertex u in NP (v) do

3: degP (u) ← degP (u)-1

4: if degP (u) < k then

5: degP (u)← 0

6: update(u, k, P )

7: end if

8: end for

}

(k, w)-core Decomposition

By Lemma 3.1.2, for a particular value of k, say kn, all (kn, w)-cores of G can

be obtained from the kn-core of G. The steps required to achieve this are shown
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in Algorithm 5. A k-core, Hk, is taken as input in P (Step 1). Let w belong to

the sorted set (in ascending order), W , of distinct edge-weights of the original

graph G. In Steps 2-11, for each weight w, all edges in P with weights (denoted

by W ) less than w are deleted and the remaining graph, the intermediate graph,

is stored in I. In this way, intermediate graphs for all wϵW are obtained, and

stored in I.

Now, the deletion of an edge (Step 6) decrements degrees of vertices on which

the edge is incident. Henceforth, the degrees of some vertices of the intermediate

graphs may have fallen below k, violating the k constraint of the (k, w)-core.

Thus, in Steps 12-19, the degrees of the vertices of each intermediate graph of I

is checked. In the process, for every vertex deletion (Step 15-16), the recursive

update function (in Algorithm 4) is called, just as was done in Algorithm 3.

The output is a set of all (k, w)-cores of G for the value of k, determined by the

k-core. So for example, if a 3-core of G is input to Algorithm 5, all (3, w)-cores

of G will be generated. Thus, in order to obtain all the (k, w)-cores of G, each

k-core obtained from Algorithm 3 is input to Algorithm 5.
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Algorithm 5 Generating all (k, w)-cores of G(V,E) for a certain value of k.

1: P (VP , EP )← Hk(Vk, Ek)

2: for each weight w in W do

3: for each vertex v in VP do

4: for each vertex u in NP (v) do

5: if W (u, v) < w then

6: E′
k ← E′

k ∪ (u, v) where E′
k is the set of edges in Hk with W < w

7: end if

8: end for

9: end for

10: I ← {I ∪ H ′
k(Vk, Ek − E′

k)}
11: end for

12: for each intermediate graph I ′(VI′ , EI′) in I do

13: for each vertex v in VI′ do

14: if degI′(v) < k then

15: degI′(v) ← 0

16: update (v, k, I ′) //Completes deletion of v in I ′ (Algorithm 4)

17: end if

18: end for

19: Hk,w ← I ′(VI′ , EI′)

20: return Hk,w

21: end for

3.2.3 Core Selection and Clustering Tree Generation

The final step of (k, w)-CC comprises of selecting cores and generating the clus-

tering tree or dendrogram. Firstly, we calculate the relatedness of the entities in

each core using a new metric, called core relatedness, which has been designed

in this thesis. We then systematically select the cores for generating a clustering

tree.

Core Relatedness Calculation

The core relatedness metric gives a quantitative measure of the level of similar-

ity, in the range of 0 to 1, between the vertices (entities) of a core. We formulate
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the relatedness, R(Hk,w), for a (k, w)-core, Hk,w, as,

R(Hk,w) = strengthk ∗ sharek + strengthw ∗ sharew,

where

strengthk =
k

degreemax

,

strengthw =
w

weightmax

.

In the above formula, strengthk resembles the structural relatedness ofHk,w, and

strengthw resembles the weight relatedness of Hk,w. degreemax is the maximum

degree in D and weightmax is the maximum weight in W . sharek and sharew

are the percentage contributions to the overall relatedness of the core by the

structural and weight relatedness parameters respectively.

As can be seen, R considers both the structural relationship (strengthk)

and the weight relationship (strengthw) of the vertices in a core in order to

determine the overall relatedness of the core’s vertices. strengthk captures the

state of interconnectivity of the vertices in a core as determined by the core’s k

value, which is an important aspect of the degree to which the core’s vertices are

interrelated. Considering this relationship to determine the overall relatedness

of the core’s vertices helps in fulfilling our objective of obtaining larger clusters,

as cores with high strengthk have high k values, and thus will have a larger

number of vertices. Selecting such cores would yield larger clusters. However,

it is important to note that evaluating cores solely on strengthk would lead to

the selection of cores that are impractically large. Moreover, while the intercon-

nectivity state of the vertices is an important aspect of their relatedness, the

extent to which one vertex is similar to the other as determined by the corre-

sponding similarity value cannot be ignored. For this reason, R also considers

the inter-entity similarity, strengthw, of the entities in a core. The parameters

sharek and sharew denote the level of importance that should be given to these

two relationships in determining the overall R value for a core. It has been ex-

perimentally found that better results are obtained if more importance is given

to strengthw in calculating the relatedness of a (k, w)-core. Best results were

obtained with percentages of 30% and 70% for sharek and sharew, respectively.

Using the above metric, R values for all the cores are computed. Then the
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cores are sorted in descending order, based on their R values, and entered in

set C. Since there may be disconnected cores in C, a connectivity check is

made on the cores. If a core Hk,w is found to be disconnected, consisting of x

subcomponents, Hk,w is removed from the ordered sequence in C and replaced

by the subcomponents, H1
k,w, H

2
k,w, . . . , H

x
k,w, where each of the subcomponents

are assigned the same R value as that of the removed core, Hk,w.

Generating Clusters from Cores

By Algorithm 6, cores are directly selected as clusters from the ordered set,

C. At every iteration, a scanned core, Hk,w, is interpreted as a candidate clus-

ter, Fk,w (Step 3). If all entities of Fk,w have already been clustered it is ig-

nored (Steps 5-7). If Fk,w consists of entities of which some have already been

clustered, Fk,w is merged with the immediately previous clusters in which the

common entities are present (Steps 8-16). The relatedness of the new cluster

formed being R(Fk,w). If none of the entities of Fk,w have been clustered earlier,

it is selected as a cluster (Step 16). The steps are repeated until all entities

have been clustered. The output clusters are stored in set, Cfinal, which gives

us the cluster hierarchy. However, if the last cluster in Cfinal is not found to

contain all the entities in G, Cfinal would yield a disconnected hierarchy as the

entities have not been clustered into a single cluster. In this situation, all the

disjoint clusters in Cfinal are merged into a single cluster with an R value of 0

and added to Cfinal. Thus, Cfinal gives us a hierarchy of clusters, which can be

conveniently viewed as a clustering tree or dendrogram.
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Algorithm 6 Generating clusters from cores, of G(V,E), with k > 1
1: Let Q be the set of entities representing each vertex in V and Cfinal be the final

set of clusters

2: for each Hk,w(Vk,w, Ek,w) in the ordered set of cores, C, do

3: Fk,w ← cluster consisting of all vertices in Vk,w

4: if k ̸= 1 then

5: if Fk,w ∩Q = ϕ (the current cluster has no new entities) then

6: continue

7: end if

8: for each entity e in Fk,w do

9: for each cluster Fi in Cfinal (starting from the last Fi in F ) do

10: if e ϵ Fi then

11: Fk,w ← Fk,w ∪ Fi

12: break

13: end if

14: end for

15: end for

16: Enter Fk,w in Cfinal, where R(Fk,w) = R(Hk,w)

17: Q← Q− Fk,w

18: C ← C −Hk,w

19: if Q = ϕ (all entities have been clustered) then

20: break

21: end if

22: end if

23: end for

A key component of this algorithm is specified by the condition statement

in Step 4. It signifies that cores with k = 1 are ignored and hence given

less preference in the cluster generation process. This is because (1, w)-cores,

regardless of their R values, have the lowest structural relatedness among all

the cores. As a result, (1, w)-cores are only selected when there are un-grouped

entities remaining and all other cores in C have already been selected, in which

case Algorithm 6 is repeated without the condition in Step 4.
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3.2.4 Time Complexity Analysis

Time complexities of the algorithms were evaluated based on the most widely

accepted complexity measure in computer science, the running time, which is

the number of operations an algorithm performs before producing the final

output [GJ79]. Before presenting the time complexity of our technique, we first

briefly describe the basic ideas and notations related to time complexity, based

on the definitions of [NR04].

Basic Ideas on Time Complexity

Since the number of operations required by an algorithm to produce the final

output is not the same for all problem instances, all inputs of a given size are

considered together, and the complexity of the algorithm for that input size is

the worst case behaviour of the algorithm on any of these inputs. Consequently,

the running time is a function of size n of the input.

The Notation O(n). In analyzing the complexity of an algorithm, we are

often interested only in the “asymptotic behaviour”, that is, the behaviour of

the algorithm when applied to very large inputs. To deal with such a property

of functions we shall use the following notations for asymptotic running time.

Let f(n) and g(n) be the functions from the positive integers to the positive

reals. Then we write f(n) = O(g(n)) if there exists positive constants c1 and c2

such that f(n) ≤ c1g(n) + c2 for all n. Thus, the running time of an algorithm

may be bounded from above by phrasing like “takes time O(n2)”.

Polynomial Algorithms. An algorithm is said to be polynomially bounded (or

simply polynomial) if its complexity is bounded by a polynomial of the size of a

problem instance. Examples of such complexities are O(n), O(nlogn), O(n100),

etc. The remaining algorithms are usually referred as exponential or non-

polynomial. Examples of such complexities are O(2n), O(n!), etc. When the

running time of an algorithm is bounded by O(n), the algorithm is called a

linear-time algorithm or simply a linear algorithm.
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Complexity of (k, w)-Core Clustering

Our technique comprises of three steps: k-core generation, (k, w)-core genera-

tion, and cluster hierarchy generation (refer to Fig. 3.5). The time complexities

of each of these steps are given below.

Complexity of k-Core Generation

The algorithm “Generating all k-cores of weighted graph” (Algorithm 3) gen-

erates all the k-cores of a weighted graph. As was seen, it analyzes the degrees

of each vertex of the graph with the aid of the recursive update function in

Algorithm 4. For a particular value of k, if the degree of any vertex is found to

be less than k, it is deleted and its neighbouring vertices’ degrees are updated.

Consequently, the degrees of the neighbouring vertices are also checked, and

the same steps are carried out on them recursively. The worst case scenario

for generating a k-core is signified by the situation when the first vertex that

qualifies as a candidate for deletion is the last vertex that has been scanned in

the graph, G(V,E). In this situation the algorithm would have performed at

most n+m traversals on the graph, where n = |V | and m = |E|. Since a vertex

deletion entails updating its neighbours and checking their degrees recursively,

in the worst case the algorithm would again scan the entire graph, performing

another n +m traversals. Thus, for each vertex deletion the algorithm would

perform at most 2× (n+m) traversals. Now, for generating all the k-cores of a

graph (i.e., k-cores for all values of k belonging to the set, D, of distinct degrees

of the vertices in G), the algorithm would delete at most n vertices. Henceforth,

the time complexity of the algorithm is O(n× 2× (n+m))⇒ O(n× (n+m)).

Complexity of (k, w)-Core Generation

The algorithm “Generating all (k, w)-cores of G(V,E) for a certain value of k”

(Algorithm 5) comprises of two parts. In the first part, it generates a set of

intermediary graphs from a k-core by deleting edges in the k-core with weights

less than w, for each w in the set, W , of distinct weights of the edges of G. To

generate any intermediary graph from a k-core, the algorithm scans m edges,

if the k-core has m edges. Thus, to generate all the intermediary graphs from

a k-core the algorithm performs |W | ×m steps. Since intermediary graphs are

generated from all k-cores and that there can be a maximum of |D| k-cores, on
assuming that each k-core has m edges we obtain the complexity of generating
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all the intermediary graphs from G as O(|D| × |W | ×m).

The next part of Algorithm 5 is to generate (k, w)-cores from the intermedi-

ary graphs. In order to do so, the algorithm scans each intermediary graph and

deploys the same degree checking steps of the k-core generation algorithm, which

was found to be O(n× (n+m)). Since there can be a maximum of |D| × |W |
intermediary graphs, we’ll need to perform a maximum of |D|×|W |×n×(n+m)

steps, where each intermediary graph is assumed to contain n vertices and m

edges.

Thus, the overall complexity of (k, w)-core generation is,

O(|D| × |W | ×m) +O(|D| × |W | × n× (n+m))

= O(|D| × |W | × n× (n+m)).

Complexity of Cluster Generation

In this phase of the clustering technique, first the relatedness values for the cores

are computed. Given that we already have the degreemax and the weightmax

values of a graph (refer to formula for core relatedness, Subsection 3.2.3), this

step takes time O(|D| × |W |) (as there can be a maximum of |D| × |W | cores).
Then the cores are sorted based on their relatedness values. This could be done

using an efficient sorting algorithm, e.g., mergesort, in which case it would take

O(|D|×|W |× log(|D|×|W |)) time [Knu98]. After sorting the cores, each core is

checked for connectivity. If any are found to be disconnected they are split into

connected components. The connectivity check for any graph G(V,E) and the

generation of its connected components could be done using depth-first search

traversal in O(n + m) time [THC09]. Therefore, performing the connectivity

check for all the cores would take O(|D| × |W | × (n+m)) time.

The cores are then selected from the sequence using the algorithm “Gener-

ating clusters from cores of G(V,E)” (Algorithm 6). Here the vertices of each

core are checked to see whether they have been chosen in the cluster hierarchy.

In the worst case this would take O(n) time, if a core contains n vertices. Thus,

when deployed on all cores, the algorithm will take O(|D|×|W |×n). (The same

time will be taken when Algorithm 6 performs the steps without the condition

in Step 4.)

On adding the complexities to obtain the complexity of the entire cluster

generation process, we have,

O(|D| × |W |) + O(|D| × |W | × log(|D| × |W |))
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+ O(|D| × |W | × (n+m)) + O(|D| × |W | × n)

= O(|D| × |W | × (n+m))1.

Overall Complexity

The overall complexity of (k, w)-CC can be obtained by adding the complexities

of each of the phases of the technique. From the above discussion, we saw the

k-core generation phase takes O(n× (n +m)) time, the (k, w)-core generation

phase takes O(|D| × |W | × n× (n+m)) time, and the cluster generation phase

takes O(|D| × |W | × (n + m)) time. On adding the complexities, we obtain

O(|D| × |W | × n× (n+m)) as the overall complexity of (k, w)-CC.

3.3 Modified Attribute Selection

In this section, we introduce a new attribute selection strategy for generating

the entity-attribute matrix, which is a modified extension of the one discussed in

Subsection 2.3.1. A class of attributes, called omnipresent attributes, chosen by

the previous attribute selection strategy was found to distort results of (k, w)-

CC. These attributes are described in Subsection 3.3.1. In Subsection 3.3.2, we

explain a way by which we could extract these attributes by identifying certain

properties of these attributes.

3.3.1 Omnipresent Attributes

We observed that (k, w)-CC returns distorted clustering results if it directly uses

the attribute selection criteria of Lung et al., which was discussed in Subsec-

tion 2.3.1. We found that attributes which tend to have a wide presence among

the entities of a function adversely affect (k, w)-CC’s restructuring results and

consequently, we found that discarding such attributes improves restructuring

results. These attributes are termed as omnipresent attributes. Because of their

wide presence among the entities of a function, they give no information on

suggesting how to separate, i.e., group the entities. Instead, in many situations,

they may misleadingly convey a similarity between entities which are actually

widely contrasting in functionality. Typical examples of omnipresent attributes

1The complexity O(|D| × |W | × log(|D| × |W |)) was ignored because both |D| and |W |
have been found to be small compared to m for software graphs.

46



are system variables and system functions. It has been seen that in most indus-

trial functions different segments of code use such attributes to access system

resources. Despite using the same system resources, it has been seen that the

segments are for widely contrasting purposes. Thus, considering system-related

attributes would be of no help in separating these segments.

The effect of omnipresent attributes on (k, w)-CC’s performance is particu-

larly significant because (k, w)-CC considers the structural relationship in ad-

dition to the inter-similarity relationship between entities. As was mentioned

earlier, the structural relationship of entities is directly dependent on their inter-

connectivity. With omnipresent attributes a large number of entities are shown

to be highly interconnected. As a consequence, this leads to the generation of

very large clusters having high relatedness values, which ultimately provides no

restructuring advice.

Among the first works that considered the negative impact of omnipresent

software modules on software clustering, and that stressed upon removing them

is that of Muller et al. [MOTU93]. Following this work, different strategies

for the detection of omnipresent modules have been proposed. Most strategies

rely on setting a predetermined connectivity threshold and then assigning all

modules that exceed the threshold as omnipresent (e.g., [MM06]). In [WT05],

the strategy is slightly different, in which modules that are connected to a

large number of subsystems, i.e., clusters, instead of entities, are assigned as

omnipresent.

For our purpose, we give a new approach for detecting omnipresent at-

tributes based on a novel categorization of attributes. We specify that, in a

function an attribute can be dependent or independent. In simplistic terms,

dependent attributes directly use the value of another attribute, whereas, in-

dependent attributes do not directly use the value of any attribute (formal

definitions of these two types of attributes are given in Subsection 3.3.2). We

observed that omnipresent attributes mostly tend to be independent. Thus, we

discard independent attributes in (k, w)-CC. We refer to the attribute selection

mode based on these criteria as Selective Attribute Selection Mode. In the fol-

lowing subsection, we elaborate on the notion of dependent and independent

attributes and explain how attribute dependency is determined.
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3.3.2 Identifying Dependent and Independent Attributes

Subject to certain conditions, an attribute is dependent if it directly uses the

value of another attribute in an executable statement (entity) of a function. It

trivially follows that an attribute can directly use the value of another attribute

only in a non-control entity2 through the assignment operator, =. Thus, when

determining attribute dependency we only consider non-control entities that use

= as an assignment operator. Control entities (condition statements, loop state-

ments) are not considered in this regard. To illustrate the notion of attribute

dependency in such an entity, consider the simple statement a = b ;. Here a

directly uses b and hence is a dependent attribute. Note that only attributes

denoting variables are considered for the purpose of attribute dependency de-

tection. Attributes denoting function names are ignored, and are designated

as independent attributes by default. Furthermore, in the example a = b ;,

if b denotes a function name, then a does not directly use the value of b, and

thus a cannot be designated as a dependent attribute solely on the basis of this

statement.

In order to formally define attribute dependency of attributes in a non-

control entity, we need to give a simplified form for the various types of non-

control entities we may encounter. Since we are concerned with detecting de-

pendency, only those non-control entities of the function which contain = as an

assignment operator are considered. In order to present a suitable form of such

entities, we consider a refined version of the entity in which all features (except

the = assignment operator) that do not qualify as an attribute by Lung et al.’s

criteria are excluded (e.g., class names, constants, keywords, operators, loop

variables, etc.).

Let S be the set of all non-control entities of a function which use = as

an assignment operator. Let A be the set of all attributes extracted from the

function as per Lung et al.’s criteria. Then any entity sϵS, in its refined form,

can be represented as L = R, where {L,R} ⊆ A. The preliminary requirement

for any attribute aϵA to be a dependent attribute in a function is that it must

belong to L for at least one entity sϵS. Before giving a complete definition of

2A non-control entity refers to assignment statements, function call statements (see Sub-

section 2.3.1}, Chapter 2)
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a dependent attribute, it is necessary to understand the ramifications of the

various of non-control entities we may encounter.

We have seen most of these entities have two basic characteristics. The

characteristics, however, are not mutually exclusive as an entity can carry more

than one of these traits. We now explore each of these two characteristics, and

show how they affect the process of finding attribute dependencies in entities.

1. Variables assigned to variables. This trait resembles an entity where

the value of a variable is assigned to another variable. An example of such an

entity was discussed in the introductory paragraph of this subsection. Here’s

another example,

a[i] = b * (c + d);

Refining the above by removing all non-attributes, except the = operator, we

have,

a i = b c d

On segregating the attributes, we have aϵL and {b,c,d}ϵR. As can be seen, a

uses the values of variables b, c, d, and thus depends on those variables. Note

that variable i is not considered in the dependency assessment because it is an

array index variable which only has referential use.

2. Functions assigned to variables. In these entities the value returned by

a function is assigned to a variable. For example,

int a = fn1(b,c) ;

Refining the above by removing all non-attributes, except the = operator, we

have,

a = fn1 b c

On segregating the attributes, we have aϵL and {fn1,b,c}ϵR. As can be seen,

a, via function fn1, uses the values of variables b and c, and thus depends on

those two variables. The relationship of a with fn1 is ignored for the purpose

of determining attribute dependency because fn1 is a function name and not a

variable.

Here’s an example from a real-life program that has both of these charac-

teristics,

title = title + " - " + application.getName();

Here we see a variable, title, being assigned to a concatenation of itself, a
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string, " - ", and the result obtained by calling a function getName. getName

is accessed by a class object, application. By removing all non-attributes from

the entity, except the = operator, we get,

title = title application getName

By segregating the attributes, we have titleϵL and {title, application,

getName}ϵR. The relationship between the title attribute in L and the title

attribute in R is ignored as both attributes refer to the same attribute and

therefore their relationship does not give any meaningful information on title’s

state of dependency. Also, title’s relationship with getName is ignored as the

latter is a function name. title only has a dependency on application.

Based on the above discussion, we define the notion of attribute dependency

as follows. Let x, y be attributes belonging to A, such that x ̸= y. Then, x

depends on y, or x→ y, iff x and y are found to belong to L and R, respectively,

of any non-control entity sϵS, provided that neither of x and y are function

names, or array index variables.

Definition 3.2.1. Dependent attribute. In any function, an attribute x,

where xϵA, is a dependent attribute if the dependency x → y can be obtained

from any non-control entity sϵS, for any attribute yϵA, such that x ̸= y and

neither of x and y are function names, or array index variables.

Definition 3.2.2. Independent attribute. In any function, an attribute

x, where xϵA, is an independent attribute if the dependency x → y cannot be

obtained from any non-control sϵS, for any attribute yϵA, such that x ̸= y and

neither of x and y are function names, or array index variables.

Based on the above definitions, we identify and discard independent at-

tributes in the entity-attribute matrix generation phase when using the (k, w)-

CC clustering technique. As elicited earlier, because independent attributes

generally tend to be omnipresent, discarding them improves the results obtained

by (k, w)-CC. Therefore, only dependent attributes are used.
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Chapter 4

Characterization of Cut-Point

Clusters

In this chapter, we elaborate on the various aspects of clusters obtained from

cut-points in dendrograms of functions. An understanding of these aspects is

necessary to interpret the implications of the experimental results presented in

Chapter 5. In this chapter, we first revisit the significance of a cluster in software

restructuring (Section 4.1). Then, in Section 4.2, we characterize clusters based

on certain common patterns which we have observed.

4.1 Significance of Clusters in Restructuring

In this section, we emphasize on the basic idea and practical implications of

clusters. In Subsection 4.1.1, we describe what clusters resemble and what

role they play in function-level software restructuring. In Subsection 4.1.2,

we discuss the practical issues that are associated with clusters during cluster

analysis.

4.1.1 Basic Ideas on Software Clusters

As was mentioned earlier, any cut-point in a dendrogram of a function returns

a partition of clusters. A cluster consists of a set of entities which correspond to

the statements1 of the function. Consequently, a cluster shows which statements

1In this discussion, we use the terms statements and entities interchangeably.
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of the function should be grouped together, and thus extracted to form a new

function.

Any cluster obtained from the cut-point of a dendrogram is of the form,

(e1, e2, . . . , en), where ei, iϵ{1, n}, represents an entity in the cluster corre-

sponding to a statement in the function (n denoting the number of entities

in the cluster).

4.1.2 Practical Implications

Clusters chosen for analysis

In the restructuring process, not all clusters are analyzed by the user of the clus-

tering tree. The only clusters that call for inspection by the user are clusters for

which n > 1. These clusters are called non-singleton clusters. A dendrogram

may also produce singleton clusters, i.e., clusters with n = 1. Singleton clus-

ters do not give any grouping information of the entities and thus are straight

away discarded on detection. (This was discussed earlier in Subsection 2.3.3 of

Chapter 2.)

Interpreting Clusters

As was discussed earlier, cohesion-based software clustering techniques give

more importance to data dependency relationships than to control dependency

relationships because only the former portray the most significant tasks of any

function. This notion of differentiation is carried out even to the cluster analysis

stage, where the clusters are interpreted to obtain meaningful restructurings.

Any cluster, (e1, e2, . . . , en), may contain both control and non-control entities.

Since only non-control entities indicate significant operations of a function by

using data attributes, the main objective in cluster analysis is to find out how

to separate the non-control entities of a function.

Consequently, any cluster that correctly groups a set of non-control entities

of a function is a useful cluster, even if it excludes some directly related control

entities. Any existing control dependency relationships of the non-control enti-

ties of such a cluster with control entities may be easily perceived by the user

while viewing the function code. Therefore, when building a new function based

on such a cluster, the user can easily identify and include any associated control
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entities as necessary. We refer to such clusters as having implicit control de-

pendencies , in which related control entities are not included. Such an example

was already seen for the sum prod function in Subsection 2.3.3 of Chapter 2. (A

cluster that correctly groups a set of non-control entities is a redundant cluster

only if it also consists of a control entity which is not related to any of the other

entities in the cluster. This scenario is discussed in Section 4.2.)

Time Spent in Cluster Analysis

A significant aspect of cluster analysis is the time spent during the analysis. We

note that inspecting a non-singleton cluster in order to determine whether or not

a meaningful restructuring can be obtained from it consumes time. From this

it follows that time spent on a non-singleton cluster from which no meaningful

restructuring could be deduced is wasted. If the cut-points of a dendrogram

generate a large number of meaningless or bad clusters, the likelihood of more

time being wasted during the analysis phase increases. Although the actual

time spent in analyzing such clusters varies from one person to another (due to

differences in programming expertise), comparing the number of bad clusters

returned by different clustering techniques would be a justifiable way to compare

the efficiency with which proper restructuring results could be obtained from the

dendrograms generated by those techniques. We performed such a comparison

in this work, the results of which are presented in Chapter 5.

4.2 Types of Clusters

In this section, we discuss some common patterns of clusters. We have heuristi-

cally established that by following these patterns it is possible to identify mean-

ingful and redundant clusters. We classify the patterns into two categories,

“Definitive Patterns”, which is discussed in Subsection 4.2.1, and “Generic Pat-

terns”, which is discussed in Subsection 4.2.2. In the rest of this discussion

we refer to redundant clusters, or clusters that do not lead to a meaningful

restructuring, as bad clusters .
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4.2.1 Definitive Patterns

We define definitive patterns of clusters as those combinations of entities of a

function which, when extracted to form a new function, never lead to a mean-

ingful restructuring. We have identified three such patterns; they’re given as

under,

Clusters with only Control Entities

Clusters that consist of only control entities don’t give any meaningful infor-

mation on clustering the function. As was stated in Subsection 4.1.2, the main

objective in cluster analysis is to identify data dependency relationships be-

tween non-control entities. Clusters with only control entities don’t give any

such information, and hence are regarded as bad clusters.

Clusters Splitting Conditional Constructs

Conditional constructs such as if-else, if-elseif-. . .-elseif, and try-catch

(in Java), are widely used in software functions. Conditional constructs consist

of multiple control blocks that are logically linked, and which are executed in a

specific sequence. Let us see an example with a sample code segment [swe12],

0 if (homeName == null) {
1 homeDisplayedName = application.getUserPreferences().

getLocalizedString(HomeFramePane.class,"untitled");

2 if (newHomeNumber > 1) {
3 homeDisplayedName += " " + newHomeNumber;

4 }
5 }
6 else {
7 homeDisplayedName = this.contentManager.getPresentationName(homeName,

ContentManager.ContentType.SWEET HOME 3D);

8 }
9 if (home.isRecovered()) {
10 homeDisplayedName += " " + application.getUserPreferences().

getLocalizedString(HomeFramePane.class,"recovered");

11 }

In the above code segment, there is an if-else construct from lines 0-8,

defined by the control entities in statements 0 and 6. It can be clearly seen that
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any restructured version of this code segment must ensure that the else block

(lines 6-8) is executed after the if block (lines 0-5).

It has been observed that many clusters ignore the logical sequence of con-

trol blocks in such conditional constructs. Such clusters suggest results that

incorrectly split the control block which defy the original flow of the program.

These clusters, therefore, have conditional construct splitting patterns and are

characterized as bad clusters.

For the sample segment above the cluster (1,2,3,9,10) (corresponding state-

ments highlighted in code) is a bad cluster since using it to restructure the code

would imply executing statements 9-10 immediately after the if-block (lines

0-5), defying the original logic of the program which was to perform the else

condition check immediately after executing the particular if-block.

Clusters with Unrelated Control Entities

Clusters with these patterns group a set of unrelated control entities. Such clus-

ters may be returned by clustering algorithms due to the 1-1 similarity matches

(see Subsection 2.3.2 in Chapter 2) between the unrelated control entities that

use the same data attributes. Here’s an arbitrary example,

0 double[] input arr = {1.4, 3.6, 0.9, 17.3, 8.2, 10.0};
1 int prod = 0;

2 int sum = 0;

3 for (double d : input arr) {
4 prod *= d;

5 }
6 for (double d : input arr) {
7 sum *= d;

8 if (sum>22.5) {
9 System.out.println(‘‘Threshold Exceeded’’) ; }
10 }
11}

For the example above the cluster (3,6,7,8,9) (highlighted in code) would be

a bad cluster since it groups control entity 3 with entities with which it has no re-

lation. Although control entities 3 and 6 use the same data attribute input arr

(that contributes to a 1-1 match between the two entities), the control entities

have no control dependency relationship. It is therefore not meaningful to have
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them in the same cluster.

4.2.2 Generic Patterns

Unlike definitive patterns, these patterns are more generic in nature as their in-

terpretation depends on the developer’s requirements and understanding of the

relationship between the entities in a cluster with such patterns. The patterns

are given as under,

Clusters without Related Entities

We have observed that there may be many clusters returned by dendrograms

that omit entities closely related to the ones in the cluster. Although the re-

structurings obtained from such clusters may be programmatically valid, in

many situations they may be deemed to be conceptually incoherent with re-

spect to the requirements of the programmer, in which cases the clusters would

be classified as bad clusters. Here’s an example [KB99],

0 void fn1(int n, int[] arr) {
1 sum = 0;

2 prod = 0;

3 for ( int i = 1 ; i < n ; i ++ )

4 {
5 sum = sum + arr [ i ] ;

6 prod = prod * arr [ i ] ;

7 }
8 avg = sum / n ;

9 }

For the above code segment, the cluster (1,5) (highlighted in code) is a bad

cluster. If this cluster is used to restructure the above code, we will have a new

function with the entities 1 and 5, leaving out entity 8. It can be seen that all

three entities carry out tasks related to the sum attribute. In the context of this

program, such a new function, despite being programmatically correct, would be

undesired as leaving out entity 8 from the new function would be conceptually

inappropriate: doing so would imply keeping entity 8 with unrelated entities

(entities 2 and 6) or dedicating a separate function for entity 8 only.

It is important to note that clusters which leave out related entities may not
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always be perceived as bad. Consider the following example,

0 void fn2(int n, int[] arr) {
1 sum = 0;

2 prod = 0;

3 for ( int i = 1 ; i < n ; i ++ )

4 {
5 sum = sum + arr [ i ] ;

6 prod = prod * arr [ i ] ;

7 }
8 avg = sum / n ;

9 if (avg>50) {
10 System.out.println(‘‘Average exceeded 50 and is equal to "+ avg) ;

11 }
12 }

For the above code segment, the cluster (1,5) (highlighted in code) would

not be a bad cluster. This is because despite the existing relationship between

entities 1, 5, and 8, entity 8 may still be kept separate from the former two

entities as it is also closely related to other entities in the function (entities

8-11). Therefore, using this cluster for restructuring would not necessarily lead

to a conceptually incoherent clustering.

Therefore, clusters that omit related entities, if detected, may or may not

lead to a meaningful restructuring for it entirely depends on the interpretation

and requirements of the programmer.

Clusters that do not retain Execution Sequence

We have observed many instances of programs which contain certain entities

that must be executed in a predefined sequence. For example, let us say that

a function consists of four entities, e1, e2, e3, e4, that are supposed to execute

in the order in which they’re mentioned. For such a function, a cluster (e1, e3)

would be a bad cluster since by using this cluster to restructure the function,

it would not be possible to ensure that entity e2 is executed before and after

entities e1 and e3, respectively. Because this cluster omits e2, using this cluster

would violate the original execution sequence of the entities. Henceforth, any

cluster that non-sequentially separates entities that are supposed to execute

in a predefined order are regarded as bad clusters. This pattern in clusters is
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similar to the “Splitting Conditional Constructs” pattern and could be viewed

as a general form of the latter. Here is an example [swe12],

0 String homeName = home.getName();

1 if (homeName == null) {
2 JFrame homeFrame = getHomeFrame(home);

3 homeFrame.toFront();

4 homeName = contentManager.showSaveDialog((View)homeFrame.getRootPane(),

null, ContentManager.ContentType.SWEET HOME 3D, null);

5 }
6 if (homeName != null) {
7 try {
8 getHomeRecorder().writeHome(home, homeName);

9 }
10 catch (RecorderException ex) {
11 ex.printStackTrace();

12 }
13 }

In the above code, line 0 declares and obtains the value of the homeName vari-

able. In lines 1-5, homeName is modified. In lines 6-13, an operation is carried out

based on the value of homeName. Since both line sets 1-5 and 6-13 use homeName,

in any restructuring of the above code, line sets 1-5 and 6-13 must follow line 0,

where homeName is declared. Also, line set 6-13 must follow line set 1-5 because

the former carries out operations based on the value of homeName after it is mod-

ified in line set 1-5. Therefore, the logical flow of the program strictly follows

a particular sequence. In that case, obtaining a function using the cluster that

groups only the highlighted entities shown above would break this sequence

for that would imply either executing the new function before line set 1-5, in

which case line set 6-13 would precede line set 1-5, or executing the new func-

tion after line set 1-5, in which case line set 1-5 would precede line 0. Thus, the

indicated cluster is a bad cluster.

Clusters with Extreme Sizes

Clusters with extreme sizes include those that contain a large number of en-

tities and those which have very few entities. Although these clusters may be

programmatically correct, they may still be rejected by the programmer and

thus, be classified as bad clusters.
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Clusters that are very large generally don’t give any meaningful restructuring

of the function. This is because in most cases such clusters do not lead to any

significant separation of the various tasks of the function, and thereby do not

fulfil the main objective of cohesion-based software restructuring. On the other

hand, functions created from clusters that contain very few entities may be

regarded as too small to meaningfully exist in a restructured version.

The characterization of clusters with extreme sizes is thus entirely dependent

on the properties of the encompassing function and the requirements of the

programmer.
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Chapter 5

Experimental Results

In this chapter, we present and discuss the results that were obtained while

performing our experiments in which we restructured Java functions using the

HACs discussed in this thesis. In Section 5.1, we explain the design of our entire

experiment. In Section 5.2, we present various experimental results in tabulated

and graphical form. Finally, in Section 5.3, we provide a discussion on the basis

of the results obtained.

5.1 Experimental Design

In this section, we describe the design of our experiment. In Subsection 5.1.1,

we give an overview of the methodology of our experiment. In Subsection 5.1.2,

we describe all the parameters that were measured while performing our exper-

iment.

5.1.1 Overall Methodology

In our experiment, Java functions were restructured using the five different clus-

tering techniques: SLINK, CLINK, WPGMA, A-KNN, and the new clustering

technique developed in this work, (k, w)-CC. The clustering techniques were

implemented to generate dendrograms of the functions. The dendrograms were

then analyzed to obtain the restructured versions. In the process, parameters

pertaining to the dendrograms of each clustering technique were measured on

the basis of which we compared the techniques with each other. The time taken

by each technique to generate the dendrograms was also measured. In addi-
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tion to that, the qualities of the final restructured versions that were eventually

obtained from each technique were compared.

As was mentioned earlier, for (k, w)-CC we have used the Selective Attribute

Selection Mode for attribute selection due to reasons discussed in Section 3.3 of

Chapter 3. For maintaining consistency there was a need to show that (k, w)-

CC did not gain an advantage over the other techniques solely because of its

modified attribute selection strategy. For this reason, we have implemented the

remaining techniques using both their prescribed attribute selection mode, the

Normal (N) Attribute Selection Mode, and the Selective (S) Attribute Selection

Mode. Therefore, effectively, we have implemented nine different restructur-

ing techniques: (k, w)-CC with S-Attribute Selection Mode only and SLINK,

CLINK, WPGMA, A-KNN with both N- and S-Attribute Selection Mode.

Since data dependency relationships are given more emphasis than control

dependency relationships during software restructuring, we used the weight ratio

of 8:3 for the weights of data attributes to control attributes for the computa-

tion of the similarity matrix. (See “Similarity Matrix Generation” in Subsec-

tion 2.3.2 of Chapter 2.)

5.1.2 Parameters Measured

Execution Time

We measured the time taken, in milliseconds (ms), by each clustering technique

to generate dendrograms for each of the functions that were analyzed in this

thesis. The execution time was measured only for the Applying Clustering

Algorithms phase (refer to Figure 2.5 in Chapter 2), i.e., from the point after

obtaining the similarity matrix in the Similarity Matrix Generation Phase to

the point when the final dendrogram is generated.

All executions were carried out in a system with a 2.4 GHz processor and

a 4096 Mb RAM. Measuring the execution times of the techniques gave us a

good estimate on the relative efficiency of the techniques.

Number of Cut-Points and Bad Clusters

The number of cut-points (Ncp) and the number of bad clusters (Nbc) are sig-

nificant indicators of the quality of the dendrograms, particularly in reflecting
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the ease with which proper restructuring results could be extracted from the

dendrograms. The criteria followed for determining bad clusters were discussed

in detail in Chapter 4.

Cohesion Improvement

We measured the maximum percentage increase in cohesion that was possible

to achieve with each clustering technique while restructuring a function. For

measuring cohesion we used the cohesion metric used by Lung et al.. Their

metric follows Anquetil et al.’s [AL03] quantitative definition of cohesion, which

ascribes the cohesion of a function to the average similarity between any two

entities of the function. Cohesion ranges from 0 (worst) to 1 (best). The formula

for cohesion, C, of a function, F , is given as under,

CF =

m∑
i=1

m∑
j=1

coeff (i,j)

m2
, such that i ̸= j,

where m is the number of entities (executable statements) of the function

and coeff (i,j) is the similarity value for entity-pair (i, j). (Mentioned in

Subsection 2.3.2 in Chapter 2.)

Since restructuring each function resulted in the creation of more functions, the

cohesion of the final restructured version was evaluated as the average cohesion

of all the functions in the system. Therefore, the cohesion of a restructured

version R that consists of n functions is given as,

CR =

n∑
i=1

CFi

n
.

5.1.3 Functions Analyzed

In our experiment we examined low-cohesive functions extracted from pub-

lished papers and an industrial Java application, SweetHome3D [swe12]. Sweet

Home 3D is a popular cross-platform interior design application for drawing two-

dimensional plans of houses. The application also provides three-dimensional

renderings of the interior designs of houses. We selected five large, low cohe-

sive, functions from the application for analysis. A full list of the names of the
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functions analyzed in this thesis along with their respective cohesion measures

(C) and lines of code (LOC) is given in Table 5.1,

List of Functions Restructured

Function Id. Function Name LOC C

1 sum max avg [LXZS06] 11 0.191

2 sum and prod [LXZS06] 9 0.139

3 sale pay profit [AAM10] 19 0.1524

4 sum1 or sum2 [BK98] 14 0.073

5 prod1 and prod2 [BK98] 8 0.121

6 fiboAvg [BK98] 10 0.28

7 deleteLevel [swe12] 41 0.13

8 displayView [swe12] 22 0.053

9 exitAfter3DError [swe12] 37 0.1022

10 updateFrameTitle [swe12] 37 0.0587

11 updateSunLocation [swe12] 40 0.113

Table 5.1: Functions analyzed.

Overall, by implementing the nine different clustering techniques, we an-

alyzed a total of 99 dendrograms obtained from the 11 functions. (The Id.

numbers shown in Table 5.1 are used to refer to the functions in the tables and

diagrams given in the rest of this chapter.)

5.2 Results and Analysis

In this section, we present the various results obtained in our experiment along

with our respective analyses. In Subsection 5.2.1, we provide the execution times

of the different techniques implemented. In Subsection 5.2.2, we tabulate the

number of cut-points and number of bad clusters generated by each technique

for each function that we analyzed. In Subsection 5.2.3, we provide results

pertaining to the cohesion improvements that was attained by restructuring

the functions using suggestions provided by each of the techniques. Finally,

in Subsection 5.3, we provide the detailed restructuring result for one of the

functions we analyzed.

5.2.1 Execution Time

We have seen that a graph can be easily obtained from the similarity matrix

of a function. As such, the similarity matrix serves as an adjacency matrix
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for the weighted graph. Since all clustering techniques work on the similarity

matrix, we investigated the relationship of the execution time of the techniques

with two different properties of the graph represented by the similarity matrix:

the number of vertices (entities), the number of edges (non-zero inter-entity

relationships).

Now, as we already mentioned, two attribute selection modes were used in

the Similarity Matrix Generation phase. Since the S-Attribute Selection Mode

discarded some of the attributes chosen by the N-Attribute Selection Mode, the

two selection modes yielded different similarity matrices for the same function.

In particular, while using the S-Attribute Selection Mode,

• Entities that only contained independent attributes were absent from the

resulting similarity matrix. This led to a reduction in the number of

vertices in the corresponding graph of the similarity matrix.

• Entity relationships that only existed because of independent attribute

matches were absent in the resulting similarity matrix. This led to a re-

duction in the number of edges in the corresponding graph of the similarity

matrix.

We observed that the reduction in the number of edges and the number of ver-

tices in the graphs of the functions, while using the S-Attribute Selection Mode,

was negligible. (See Table 5.2.) Consequently, we observed that changing the

attribute selection mode did not make any noticeable difference in the execution

time of any technique. Therefore, we only recorded the execution times of all

the algorithms when they were implemented using their prescribed attribute se-

lection modes, i.e., N-Attribute Selection Mode for SLINK, CLINK, WPGMA,

A-KNN and S-Attribute Selection Mode for (k, w)-CC.
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Function No. of Vertices (n) No. of Edges (m)

Id. N-Attr. Sel. Mode S-Attr. Sel. Mode N-Attr. Sel. Mode S-Attr. Sel. Mode

1 7 7 11 10

2 8 6 11 7

3 13 13 51 48

4 8 8 8 8

5 5 5 5 5

6 7 7 10 10

7 25 25 280 279

8 17 15 33 32

9 24 22 112 99

10 25 25 78 73

11 34 34 561 561

Table 5.2: No. of vertices and no. of edges in the graphs of each function,

obtained using the two attribute selection modes.

Table 5.3 provides the execution times for each of the techniques when they

were implemented on the functions. As can be seen, SLINK, CLINK, and

WPGMA took the same execution times. The reason for this is due to the fact

that these three techniques deploy exactly the same algorithmic mechanism

except for minor differences in the way they calculate cluster similarity.

Function Execution Times (ms)

Id. SLINK(N) \ CLINK (N) \ WPGMA (N) A-KNN(N) (k, w)-CC(S)

1 0.41 0.11 0.328

2 0.175 0.021 0.077

3 3.45 0.092 1.5

4 0.55 0.039 0.11

5 0.08 0.015 0.048

6 0.2 0.02 0.1476

7 22.02 0.44 9.68

8 4.36 0.33 1.24

9 20.8 0.95 4.49

10 21.954 0.62 3

11 34.01 3.01 22.88

Table 5.3: Execution times of the clustering techniques for each function.

Figures 5.1, 5.2 show plotted-graphs for the techniques’ execution times. In

Fig. 5.1, the functions are horizontally presented in increasing order of number of

vertices in their corresponding graphs. In Fig. 5.2, the functions are horizontally

presented in increasing order of number of edges in their corresponding graphs.
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From the figures, we can see that there exists a positive correlation between

the execution times of SLINK, CLINK, WPGMA and the number of vertices in

the graph. Similarly, we can see that (k, w)-CC’s execution time has a positive

correlation with the number of edges in a graph. No such relationship was

possible to establish for A-KNN.

Figure 5.1: Execution times of the clustering techniques for each function, with

functions arranged by no. of vertices in their corresponding graphs.

Figure 5.2: Execution times of the clustering techniques for each function, with

functions arranged by no. of edges in their corresponding graphs.

Regarding the comparative speeds of the techniques, SLINK, CLINK, and

WPGMA consumed the greatest execution times, while A-KNN performed the

quickest. (k, w)-CC’s performance was intermediary, performing slower than
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A-KNN but significantly faster than the other three; on average, (k, w)-CC

performed 59.72% percent faster than SLINK, CLINK, and WPGMA.

5.2.2 Number of Cut-points and Bad Clusters

The number of cut-points and bad clusters obtained by implementing SLINK,

CLINK, WPGMA, A-KNN and (k, w)-CC on each function, with their pre-

scribed attribute selection modes, are given in Table 5.4 and Table 5.5 respec-

tively. Coloured stacked chart representations of the data in these tables are

given in Figures 5.3 and 5.4.

Function No. of cut-points (Ncp)

Id. SLINK (N) CLINK (N) WPGMA (N) A-KNN(N) (k, w)-CC(S)

1 5 4 5 5 2

2 3 2 3 3 2

3 8 8 10 8 5

4 4 3 5 4 2

5 1 1 2 1 1

6 4 3 4 4 3

7 8 12 11 8 4

8 12 9 14 12 7

9 12 12 14 12 8

10 20 16 22 20 9

11 19 22 23 19 3

TOTAL 96 92 113 96 46

Table 5.4: Number of cut-points generated for (k, w)-CC with S-Attribute Selec-

tion Mode and SLINK, CLINK, WPGMA, A-KNN with N-Attribute Selection

Mode.
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Figure 5.3: Number of cut-points generated for (k, w)-CC with S-Attribute

Selection Mode and SLINK, CLINK, WPGMA, A-KNN with N-Attribute Se-

lection Mode.

Function No. of bad clusters (Nbc)

Id. SLINK (N) CLINK (N) WPGMA (N) A-KNN(N) (k, w)-CC(S)

1 4 3 2 4 0

2 3 1 1 3 0

3 7 6 5 7 1

4 2 2 2 2 0

5 0 0 0 0 0

6 1 1 1 1 1

7 12 14 13 12 3

8 8 5 8 8 4

9 17 13 19 16 5

10 15 13 17 15 9

11 15 18 17 14 0

TOTAL 84 76 85 82 23

Table 5.5: Number of bad clusters generated for (k, w)-CC with S-Attribute

Selection Mode and SLINK, CLINK, WPGMA, A-KNN with N-Attribute Se-

lection Mode.
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Figure 5.4: Number of bad clusters generated for (k, w)-CC with S-Attribute

Selection Mode and SLINK, CLINK, WPGMA, A-KNN with N-Attribute Se-

lection Mode.

As can be seen, overall, (k, w)-CC was found to give both a smaller number

of cut-points and a smaller number of bad clusters than all the other techniques.

For many of the functions, (k, w)-CC gave almost zero bad clusters. On average,

(k, w)-CC gave 52.08%, 50.00%, 59.29%, 52.08% fewer number of cut-points

than did SLINK,(N) CLINK(N), WPGMA(N), and A-KNN(N), respectively.

In addition, (k, w)-CC gave 72.62%, 69.74%, 72.94%, 71.95% fewer number of

bad clusters than did SLINK(N), CLINK(N), WPGMA(N), and A-KNN(N),

respectively.

In order to ascertain that (k, w)-CC did not produce better results solely

because of it’s modified attribute selection strategy, we also implemented the

previous HACs using the S-Attribute Selection Mode. Likewise, we have pro-

vided the results obtained in Tables 5.6, 5.7 and in Figures 5.5, 5.6.

69



Function No. of cut-points (Ncp)

Id. SLINK (S) CLINK (S) WPGMA (S) A-KNN(S) (k, w)-CC(S)

1 5 4 5 5 2

2 2 2 3 2 2

3 8 10 10 8 5

4 3 2 3 3 2

5 1 1 2 1 1

6 3 3 4 3 3

7 5 8 11 5 4

8 6 5 9 6 7

9 8 10 11 8 8

10 11 13 18 13 9

11 13 18 21 13 3

TOTAL 65 76 97 67 46

Table 5.6: Number of cut-points generated for all techniques with S-Attribute

Selection Mode.

Figure 5.5: Number of cut-points generated for all techniques with S-Attribute

Selection Mode.
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Function No. of bad clusters (Nbc)

Id. SLINK (S) CLINK (S) WPGMA (S) A-KNN(S) (k, w)-CC(S)

1 2 3 2 2 0

2 1 1 1 1 0

3 4 5 5 4 1

4 2 2 2 2 0

5 0 0 0 0 0

6 1 1 1 1 1

7 5 7 11 4 3

8 4 3 6 4 4

9 9 12 12 9 5

10 13 14 17 13 9

11 13 14 16 10 0

TOTAL 54 62 73 50 23

Table 5.7: Number of bad clusters generated for all techniques with S-Attribute

Selection Mode.

Figure 5.6: Number of bad clusters generated for all techniques with S-Attribute

Selection Mode.

From the above findings, we see that although the modified attribute se-

lection technique did improve the Ncp and Nbc measures of SLINK, CLINK,

WPGMA, and A-KNN, overall their results were still considerably worse than

(k, w)-CC’s results. On average, (k, w)-CC gave 29.23%, 39.47%, 52.58%, 31.34%

fewer number of cut-points than did SLINK(S), CLINK(S), WPGMA(S), and

A-KNN(S), respectively. In addition, (k, w)-CC gave 57.41%, 62.90%, 68.49%,
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54.00% fewer number of bad clusters than did SLINK(S), CLINK(S), WPGMA(S),

and A-KNN(S), respectively.

5.2.3 Cohesion Improvement

After analyzing the dendrograms returned by the different clustering techniques

for each of the functions, we restructured the functions based on the clusters

that had been obtained from the dendrograms. Consequently, we measured

the quality of the restructurings obtained by the different techniques, i.e., we

measured the overall cohesion of each of the restructured versions we obtained.

(For this purpose, we used the cohesion metric described in Subsection 5.1.2.)

Since each clustering technique gave different restructuring versions in terms of

cohesion, we recorded the maximum cohesion that was attainable through the

suggestions of each technique, for every function we analyzed. Subsequently, we

measured the percentage increases in cohesion.

For the purpose of this work our primary focus was on the relative quality of

the results obtained through (k, w)-CC. Thus, we compared (k, w)-CC’s results

only with those techniques which gave the best results with respect to cohesion.

Among the previous clustering techniques, we found CLINK and WPGMA to

give the best results in this aspect, while using both the attribute selection

modes. A comparison of (k, w)-CC with CLINK, WPGMA using N- and S-

Attribute Selection Modes based on percentage improvements in cohesion for

each function, are shown in Figures 5.7 and 5.8 respectively.
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Figure 5.7: Maximum cohesion improvement through (k, w)-CC, CLINK(N),

WPGMA(N).

Figure 5.8: Maximum cohesion improvement through (k, w)-CC, CLINK(S),

WPGMA(S).

The charts in the above figures indicate that (k, w)-CC provides competitive
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results in terms of the quality of the restructurings obtained. In fact, with the

majority of the functions, it was seen that the quality of the restructuring

results obtained using (k, w)-CC were just as good as those obtained using the

remaining techniques.

5.2.4 Sample Restructuring Result

In this subsection, we provide the full restructuring result of a large function,

exitAfter3DError(), from the SweetHome3D application. The code of this func-

tion is given below,

0 private void exitAfter3DError() {
1 boolean modifiedHomes = false;

2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;

5 break;

6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();

10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();

15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);

17 homeFrame.toFront();

18 homeName = contentManager.showSaveDialog((View)homeFrame.

getRootPane(),null,ContentManager.ContentType.SWEET HOME 3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);

23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();

26 }
27 }
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28 deleteHome(home);

29 }
30 }
31 }
32 for (Home home : getHomes()) {
33 deleteHome(home);

34 }
35 System.exit(0);

36 }

The complete characterization of the clusters obtained for the above code

along with the corresponding dendrograms for each of the techniques is pre-

sented in Tables 5.8-5.16. The number of cut-points and the number of bad

clusters returned by each technique are also indicated in the tables. An expla-

nation of the notation used in the tables is given as under,

1. {X, Y, Z} represents a partition of clusters X, Y, Z, obtained from a cut-

point, where each of X, Y, Z contain more than one entity. Thus, any singleton

clusters returned by the partitions are not shown. (Such clusters are ignored in

the cluster analysis stage - see Subsection 4.1.2, Chapter 4.)

2. (x, y) represents a cluster consisting of entities x and y.

3. (x↔ y) represents a cluster in the dendrogram consisting of all the entities

listed on the horizontal axis of the corresponding dendrogram that are between

x and y, including x and y.

4. Any cluster that is struck out, e.g., (x, y) or (x↔ y), indicates that the

cluster is a bad cluster.
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Table 5.8: Cluster analysis of dendrogram obtained by SLINK(N) for ex-

itAfter3DError().
SLINK (N)

Cut-Point Partitions:

{(21 ↔ 15)}, {(25 ↔ 24)}, {(25 ↔ 15),(33,28),(4,1)}, {(13,12),(32,2),(5,3)}, {(17,16),(22,14),(33 ↔ 12)},
{(25 ↔ 12),(5 ↔ 1)}, {(22 ↔ 12)}, {(22 ↔ 1)}, {(17 ↔ 1)}, {(18 ↔ 1)}, {(9, 8)}, {(11 ↔ 1)}

Ncp = 12, Nbc = 17

Table 5.9: Cluster analysis of dendrogram obtained by CLINK(N) for ex-

itAfter3DError().
CLINK (N)

Cut-Point Partitions:

{(20,15)}, {(25,24)}, {(33,28),(4,1)}, {(32,2),(13,12),(5,3)}, {(17,16),(22,14)}, {(21↔15)},
{(18↔16),(21↔12)}, {(9,8)}, {(21↔11)}, {(25↔14)}, {(18↔14)}, {(18↔11)}

Ncp = 12, Nbc = 13
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Table 5.10: Cluster analysis of dendrogram obtained by WPGMA(N) for ex-

itAfter3DError().
WPGMA (N)

Cut-Point Partitions:

{(20,15)}, {(25,24)}, {(33,28),(4,1)}, {(21↔15)}, {(13,12),(5,3),(32,2)}, {(22,14),(17,16)}, {(25↔15)},
{(25↔12),(18↔16)}, {(33↔14)}, {(18↔12),(9,8)}, {(5↔2)}, {(33↔12)}, {(33↔11),(5↔1)}, {(33↔1)}

Ncp = 14, Nbc = 19

Table 5.11: Cluster analysis of dendrogram obtained by A-KNN(N) for ex-

itAfter3DError().
A-KNN (N)

Cut-Point Partitions:

{(21↔15)}, {(24,24)}, {(25↔15),(32,28),(4,1)}, {(5,3),(32,2),(13,12)}, {(33↔12),(17,16)},
{(25↔12),(5↔1)}, {(25↔14)}, {(25↔2)}, {(17↔2)}, {(18↔2)}, {(9,8)}, {(18↔11)}

Ncp = 12, Nbc = 16
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Table 5.12: Cluster analysis of dendrogram obtained by SLINK(S) for ex-

itAfter3DError().
SLINK (S)

Cut-Point Partitions:

{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(22↔14)}, {(18↔16)},
{(25↔14),(28↔12)}, {(18↔14)}, {(18↔12)}, {(18↔11),(5↔2)}

Ncp = 8, Nbc = 9

Table 5.13: Cluster analysis of dendrogram obtained by CLINK(S) for ex-

itAfter3DError().
CLINK(S)

Cut-Point Partitions:

{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15,14)}, {(18↔16)}, {(25↔21),(28↔12)},
{(22↔14),(5↔2)}, {(25↔12)}, {(22↔12)}, {(18↔12)}, {(18↔11)}

Ncp = 10, Nbc = 12
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Table 5.14: Cluster analysis of dendrogram obtained by WPGMA(S) for ex-

itAfter3DError().
WPGMA(S)

Cut-Point Partitions:

{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15,14)}, {(18↔16)}, {(25↔21),(28↔12)},
{(22↔14)}, {(25↔12)}, {(5↔2)}, {(22↔12)}, {(22↔16)}, {(22↔11)}

Ncp = 11, Nbc = 12

Table 5.15: Cluster analysis of dendrogram obtained by A-KNN(S) for ex-

itAfter3DError().
A-KNN(S)

Cut-Point Partitions:

{(33,32),(17,16),(25,24),(28,13),(9,8),(5↔3)}, {(22,20)}, {(15↔14)}, {(18↔16)}, {(21↔14),(28↔12)},
{(18↔14)}, {(18↔12)}, {(18↔1),(5↔2)}

Ncp = 8, Nbc = 9

79



Table 5.16: Cluster analysis of dendrogram obtained by (k, w)-CC(S) for ex-

itAfter3DError().
(k,w)-CC(S)

Cut-Point Partitions:

{(3↔5)}, {(8,9),(32,33)}, {(14↔22)}, {(16↔18)}, {(14↔28)}, {(14↔12)}, {(3↔2)}, {(14↔11)}

Ncp = 8, Nbc = 5

Cluster Patterns Observed

During cluster analysis, there were several patterns observed in the clusters

obtained from the dendrograms. Most of the bad clusters we found conformed

with at least one of the patterns mentioned in Section 4.2 of Chapter 4.

Firstly, many of the clusters were found to be of extreme sizes. For example,

referring to the code of the exitAfter3DError() function in pages 74-75, clusters

(25,24), (33,32), (22,20), (28,13), which were returned by most of the algorithms,

were too small to be considered as the constituents of individual functions. On

the other hand, clusters like (18 ↔ 11) in the dendrogram of A-KNN(N) were

too big to form any meaningful restructuring.

Then, there were several clusters which did not include all related entities,

e.g., cluster (17,16), which omits the related entity 18. Although entities 17

and 16 are more similar to each other than they are with entity 18, all the three

entities use the homeFrame variable and are in the same control block. Thus,

it would be conceptually incoherent to leave out entity 18 from a function that

contains entities 17, 16.

There were also clusters which only contained control entities. These clus-

ters were designated as bad clusters for reasons mentioned in Section 4.2 of

Chapter 4. The cluster (13,12) is one such example. Among such clusters,
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there were clusters which contained unrelated control entities, e.g., (32,2).

Finally, there were clusters which had patterns that split conditional con-

structs. An example is cluster (25 ↔ 12) which is returned by SLINK(N). It

suggests grouping the highlighted entities shown below,

11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();

15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);

17 homeFrame.toFront();

18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.SWEET HOME 3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);

23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();

26 }
27 }
28 deleteHome(home);

29 }
30 }
31 }
32 for (Home home : getHomes()) {
33 deleteHome(home);

34 }

As can be seen, the cluster (25 ↔ 12) suggests in splitting the try-catch

construct by omitting entity 22 in the try block. Consequently, deploying this

cluster would violate the original execution sequence of the code.

Restructured Versions

Based on the meaningful clusters that were returned by the dendrograms,

two restructured versions of the function were obtained. The first version

was suggested only by SLINK(N), CLINK(N), WPGMA(N), and A-KNN(N).
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The second, more cohesive version was suggested by SLINK(S), CLINK(S),

WPGMA(S), A-KNN(S), and (k, w)-CC. The versions suggest specific sets of

lines that should be extracted to form a new function. They are shown below,

(lines that are highlighted with the same colour are extracted into the same

function),

Restructured Version 1

0 private void exitAfter3DError() {
1 boolean modifiedHomes = false;

2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;

5 break;

6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();

10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();

15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);

17 homeFrame.toFront();

18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.SWEET HOME 3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);

23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();

26 }
27 }
28 deleteHome(home);

29 }
30 }
31 }
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32 for (Home home : getHomes()) {
33 deleteHome(home);

34 }
35 System.exit(0);

36 }

Restructured Version 2

0 private void exitAfter3DError() {
1 boolean modifiedHomes = false;

2 for (Home home : getHomes()) {
3 if (home.isModified()) {
4 modifiedHomes = true;

5 break;

6 }
7 }
8 if (!modifiedHomes) {
9 show3DError();

10 }
11 else if (confirmSaveAfter3DError()) {
12 for (Home home : getHomes()){
13 if (home.isModified()) {
14 String homeName = home.getName();

15 if (homeName == null) {
16 JFrame homeFrame = getHomeFrame(home);

17 homeFrame.toFront();

18 homeName = contentManager.showSaveDialog((View) homeFrame.

getRootPane(),null,ContentManager.ContentType.SWEET HOME 3D,null);

19 }
20 if (homeName != null) {
21 try {
22 getHomeRecorder().writeHome(home, homeName);

23 }
24 catch (RecorderException ex) {
25 ex.printStackTrace();

26 }
27 }
28 deleteHome(home);

29 }
30 }
31 }
32 for (Home home : getHomes()) {
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33 deleteHome(home);

34 }
35 System.exit(0);

36 }

Both the restructured versions were found to have almost the same cohe-

sion, each giving nearly a two-fold improvement with respect to the original

cohesion of the function. (The cohesions of restructured versions 1 and 2 are

0.2 and 0.233, respectively. The original function’s cohesion is 0.1022, shown in

Table 5.1.)

Benefits of (k, w)-CC

As can be seen from Table 5.16, (k, w)-CC generated eight cut-points which was

lower than that generated by all the other techniques using the N-Attribute Se-

lection Mode. (k, w)-CC’s Ncp measure was also lower than that of the other

techniques, except SLINK and A-KNN, when the other techniques used the S-

Attribute Selection Mode. SLINK(S) and A-KNN(S) produced the same num-

ber of cut-points as did (k, w)-CC. Nevertheless, (k, w)-CC’s Nbc measure was

lower than that of all the other techniques when they used both the attribute

selection modes. From the restructuring perspective, the maximum cohesion

that was attainable using all these techniques was 0.233. (k, w)-CC was among

the techniques which suggested this improvement. This showed that (k, w)-CC

retained the best restructuring suggestion for this function despite reducing the

number of cut-points.

Therefore, for the exitAfter3DError function, (k, w)-CC has generated a

clearer dendrogram by generating a lower number of cut-points and a lower

number of bad clusters. In the process, it has also retained the best restructuring

result that was attainable from all the techniques.

5.3 Discussion

From the results obtained in our experiments it can be established that, overall,

(k, w)-CC produces both a smaller number of cut-points and a smaller number

of bad clusters in its dendrogram outputs. Consequently, the dendrograms

are easier to analyze and more readily usable for the purpose of restructuring
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code than are those of previously good software clustering techniques (SLINK,

CLINK, WPGMA, and A-KNN). It was also established that the quality of

(k, w)-CC’s outputs was not noticeably compromised as a result of reducing the

two parameters. A key finding in this regard was that the previous algorithms

gave many meaningful results, of varying quality in terms of overall cohesion. In

contrast, (k, w)-CC, for most functions, gave only a single restructuring result,

which turned out to be as good as the best restructuring results returned by

the other techniques. Thus, (k, w)-CC was found not only to discard redundant

results, but also to discard meaningful results which were of inferior quality.

As was mentioned earlier, (k, w)-CC uses the Selective Attribute Selec-

tion strategy. For maintaining consistency, we used this strategy with SLINK,

CLINK, WPGMA, and A-KNN as well. The new strategy was found to im-

prove the results of the other techniques in terms of the numbers of cut-points

and bad clusters returned. This was expected since the new strategy discarded

a number of attributes, leaving lesser attributes on the basis of which entity

similarities were determined. As a result, the effect of omnipresent attributes

on the similarity values was cancelled out. This increased the likelihood of

obtaining a fewer number of distinct similarity values in the similarity matrix

and thus increased the chances of obtaining more clusters with identical simi-

larity values while using the previous clustering techniques. Since clusters with

the same similarity correspond to the same cut-point in the dendrogram, the

chances of obtaining lesser number of cut-points was also increased. In addition

to that, any similarity that existed between widely contrasting entities (in terms

of functionality) due to matching omnipresent attribute usage was discarded.

This helped the algorithms to group entities meaningfully and generate a lesser

number of bad clusters. Nevertheless, overall both of (k, w)-CC’s Ncp and Nbc

measures were still better than those of the other techniques when all used the

new attribute selection strategy.

Regarding (k, w)-CC’s limitations, (k, w)-CC was found to suffer when im-

plemented on functions which contained omnipresent attributes that qualified

as dependent attributes by the criteria of the Selective Attribute Selection Strat-

egy. Although such cases were rare, this observation showed that the Selective

Attribute Selection Strategy cannot always eliminate all omnipresent attributes

of a function. In view of the overhead of the techniques, despite being signifi-
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cantly faster than SLINK, CLINK, and WPGMA, (k, w)-CC was much slower

than A-KNN. Finally, the benefits of (k, w)-CC over the other techniques were

established on the basis of the results obtained from restructuring Java functions

only.

We summarize our results as follows,

• Overall, (k, w)-CC gave smaller numbers of cut-points and bad clusters

in its dendrograms than did all the other clustering techniques. The per-

centage improvements by (k, w)-CC over each of the other techniques in

these two aspects is shown in Table 5.17 below,

Parameter Percentage Improvement by (k, w)-CC

Name SLINK (N) CLINK (N) WPGMA (N) A-KNN(N) SLINK (S) CLINK (S) WPGMA (S) A-KNN(S)

Ncp 52.08% 50.00% 59.29% 52.08% 29.23% 39.47% 52.58% 31.34%

Nbc 72.62% 69.74% 72.94% 71.95% 57.41% 62.90% 68.49% 54.00%

Table 5.17: Percentage improvement by (k, w)-CC in Ncp and Nbc over other

techniques

• (k, w)-CC was faster by approximately 59.72% than SLINK, CLINK, and

WPGMA. However, A-KNN was the fastest; it was found to be 94.77%

faster than SLINK, CLINK, and WPGMA.

• For most of the functions, the maximum cohesion improvement attained

by all the techniques, including (k, w)-CC were equal.
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Chapter 6

Conclusion

Software restructuring has become an important research area particularly be-

cause of the costly impact of ill-structured code in the software industry. In

this work, we have developed a new hierarchical clustering technique based on

(k, w)-core decomposition, (k, w)-Core Clustering ((k, w)-CC), for restructuring

software functions in order to improve cohesion, one of the most crucial aspects

of software quality. Hierarchical clustering techniques generate dendrograms

or clustering trees which give suggestions on how to restructure software code.

Unlike previous hierarchical clustering algorithms, (k, w)-CC has been found to

generate better dendrograms that are easier to analyze and hence from which

restructuring solutions are more readily retrievable. In particular, (k, w)-CC

has generated dendrograms that contain a smaller number of cut-points and

a smaller number of bad clusters. To establish this, we have compared the

dendrograms of (k, w)-CC with those of four previous hierarchical clustering

algorithms (SLINK, CLINK, WPGMA, and A-KNN), that were known to give

good restructuring solutions. The techniques have been implemented on func-

tions extracted from published papers and real-life software. Overall, we have

found our technique to produce the same quality restructuring solutions as

those of the other techniques, through dendrograms that were more readable.

In terms of performance, although (k, w)-CC was found to be slower than A-

KNN, it was found to execute considerably faster than SLINK, CLINK, and

WPGMA. In this thesis work, we have also developed a software tool that can

automatedly generate dendrograms of Java functions, using (k, w)-CC and the

four previous hierarchical clustering algorithms. We have also given a heuristic
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characterization of the various clusters that may appear while analyzing the

dendrograms.

Software restructuring using hierarchical clustering techniques have been

widely popular particularly due to the efficiency and effectiveness with which

they could be implemented. Among the early implementations were those of

Anquetil et al. [AL99], which deployed hierarchical clustering algorithms to re-

structure functions. More recently, Lung et al. [LXZS06] gave an improved

implementation of the algorithms by providing a more refined similarity metric,

a key component of such algorithms. Alkhalid et al. [AAM10, AAM11] extended

their work and designed a new and efficient hierarchical clustering algorithm for

restructuring software at the class and package levels. Since all these techniques

generate dendrograms, choosing the appropriate cut-points from these dendro-

grams, from which meaningful restructuring suggestions can be obtained, has

always been a difficult problem. The previous algorithms complicate this prob-

lem by returning a large number of cut-points which yield a large number of

meaningless clusters. Our approach intuitively addresses this problem by con-

sidering the structural relationship (interconnectivity) of entities, in addition to

their inter-similarities. As a consequence, (k, w)-CC produces larger and more

meaningful clusters.

Based on the findings obtained from this research work, there is scope for

further research in several directions. Below we give ideas on some of the areas

where progress could be made.

• The (k, w)-CC algorithm presented in this thesis reduces the cut-point and

bad cluster counts in dendrograms, two important measures for assessing

the readability of dendrograms. There is scope for building efficient clus-

tering techniques that can achieve even further reductions in these two

measures. In this regard, time may be well spent in investigating other

properties of the relationships of software entities that could form as the

basis of the new clustering techniques, just the way entity interconnectiv-

ity serves (k, w)-CC.

• A theoretical analysis on the ideal ratio of sharek and sharew, two param-

eters which denote the level of importance given to the interconnectivity

and inter-similarity properties in calculating a core’s relatedness, could be

carried out. In this thesis, we have determined this ratio experimentally.
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• In our experiments it was seen that, overall, using the new attribute se-

lection strategy reduced the Ncp and Nbc measures of SLINK, CLINK,

WPGMA, and A-KNN. A rigorous analysis, both theoretically and exper-

imentally, could be performed to establish defining relationships between

the strategy and the characteristics of those algorithms in order to give

in-depth explanations of this phenomenon.

• (k, w)-CC was found to suffer from the presence of omnipresent attributes

in functions, in which it generated clusters that were too large to induce

a meaningful restructuring. To deal with this a new strategy was used

for choosing attributes. The strategy helped in discarding many of the

omnipresent attributes, which were classified as independent. Although

this improved (k, w)-CC’s results for almost all cases, there were some

cases where omnipresent attributes existed as dependent attributes and

thus were not discarded by the selection strategy. In this aspect, there is

scope for advancement in the development of clustering algorithms that

are less sensitive to the presence of omnipresent attributes, while at the

same time achieving the goals of producing clearer dendrograms.

• Given (k, w)-CC’s benefits over the previous techniques at the function-

level, there is good prospect in investigating the results of (k, w)-CC when

applied to higher levels of software, e.g., class, package, or even architec-

ture levels.

• Finally, there is considerable scope for research in the aspect of the us-

ability of the dendrograms. In this thesis we have taken a significant

step in this direction, in which we characterized clusters, obtained from

dendrograms, based on some specific patterns. The characterization will

aid users in assessing clusters as meaningful or redundant. Although the

patterns we identified were found to be prevalent in clusters of software

functions, there is room for development in identifying and classifying

other complex patterns that may appear.
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Appendix A

The CohesionOptimizer Tool

CohesionOptimizer is a GUI-enabled software tool that allows the user to au-

tomatedly obtain clustering tree visualizations of Java functions in the form of

dendrograms. The tool has been entirely coded in Java. This section describes

the various features of the tool. Subsection A.1 elaborates on how to use the

tool. Subsection A.2 gives the minimum system requirements of the tool.

A.1 Using the Tool

Figure A.1: The CohesionOptimizer software tool.
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In order to execute the application the user has to open the .jar application

file of the software. Then in order to perform a clustering of a function, the

user will have to open a new “Optimization Activity” from the File menu. The

window shown in Fig. A.1 would then appear.

A.1.1 Input

The user will have to input the following details in the “Optimization Activity”

window,

• the attribute extraction mode,

• the weight ratio between the data and control attributes,

• the pathname of a .java file which contains the function to be restructured,

• the method of clustering that is to be used.

Format of Input File. In order to interpret1 the input function, the tool

expects the code of the function to follow traditional formats: Each statement

of the code must exist in a single line. The first line of the code must be the

name of the function with an opening brace and must be tagged with the text,

“#HEADER#”. Declaration statements must be tagged “#DEC#”. Each

control statement must start from a new-line. (E.g., the code “. . .} else {”
must be separated into two lines, i.e., “. . .}” in one line and “else {” in the

other.). Single-line comments, blank lines may be present.

Attribute Extraction Mode. Two attribute extraction modes are avail-

able: The Normal Attribute Extraction Mode directly follows the attribute

selection criteria of Lung et al. [LXZS06] and Selective Attribute Extraction

Mode, which follows the new attribute selection strategy presented in this thesis.

For obtaining best results while using (k, w)-CC, we recommend the Selective

Attribute Extraction Mode.

Weight Ratio. For best results, weight ratios of 8:3, 5:2, 3:1 are recom-

mended for data to control attributes respectively.

Clustering method. Five clustering algorithms can be used to perform

clustering: Single Linkage Algorithm (SLINK), Complete Linkage Algorithm

1A custom-built parser based on the Java StringTokenizer class was used for this purpose.
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(CLINK), Weighted Pair-Group Method of Arithmetic Averages (WPGMA),

Adaptive k-Nearest Neighbour Algorithm (A-KNN), and (k, w)-Core Clustering

((k, w)-CC).

After inputting the above information, the “Code” box shall display an

enumerated version of the function, where each statement/LOC of the function

is prefixed with a unique number. Unique numbers are given only to non-

comment lines of code.

A.1.2 Output

The user can then generate a dendrogram for the input java function by click-

ing on the “Analyze” button. The dendrogram is displayed inside the “Den-

drogram” box. The dendrogram displays the entities of the function in the

horizontal axis, on a vertical scale of similarity ranging from 0 to 1. The blue

lines indicate the clusters. The red-dashed lines indicate the possible lines of

cut.

The “Save Dendrogram” button saves the output dendrogram as a .png

image file in the same directory where the software tool application file (i.e.,

the .jar file) is located.

A.2 System Requirements

CohesionOptimizer is a cross-platform application that can be used in both

Linux andWindows based machines with Java enabled. For best user experience

we recommend the application to be used in a system configured with at least

the following settings,

• Operation System: Windows XP (for Windows-based systems), Ubuntu

9.04 (for Linux-based systems)

• Processor: 1.4 GHz

• RAM: 1 Gb
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Appendix B

(k, w)-CC Implementation Code

In this section we provide the implementation code for the (k, w)-Core Cluster-

ing algorithm that was developed in this work.

package javaapplication1;

import java.util.*;

import java.text.DecimalFormat;

class Core {
public ArrayList al = new ArrayList();

int prox[][];

int proxFull[][];

int kCMatrix[][];

int kwCMatrix[][];

int kCMax = 0, kwCMax = 0;

double cohArr[][];

double relClusters[][];

//the final set of cores to be used for clustering

int compArr[];

int compNo;

int disconnComp;

int entityCheckListMain[];

int lineNumbers[];

int total line count = 0;

int dC row cnt, dC col cnt;

double coeffArr[];

public Core(int[][] input, ArrayList al, int Wd, int Wc, int total line count, int attr count) {
dC row cnt = al.size();

dC col cnt = al.size() + 2;

int dendseqCreator[][] = new int[dC row cnt][dC col cnt];

double coeffArr[] = new double[al.size()];

int entityCheckListMain[] = new int[al.size()];

for (int i = 0; i < al.size(); i++) {
entityCheckListMain[i] = 0;
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}
this.entityCheckListMain = entityCheckListMain;

this.al = al;

Object ia[] = al.toArray();

int lineNumbers[] = new int[al.size()];

int[][] prox = new int[al.size() + 1][al.size() + 1];

//the proximity matrix

this.total line count = total line count;

int[][] proxFull = new int[total line count + 1][total line count + 1];

//the proximity matrix with all lines

for (int i = 0; i < al.size(); i++) {
lineNumbers[i] = ((Integer) ia[i]).intValue();

}

//initializing the clustering coefficients array

for (int i = 0; i < al.size(); i++) {
coeffArr[i] = 0;

}
this.coeffArr = coeffArr;

for (int i = 0; i < al.size(); i++) {
prox[0][i + 1] = lineNumbers[i];

prox[i + 1][0] = lineNumbers[i];

}

coreDecomp();

}

//THE CORE DECOMPOSITION ALGORITHM

private void coreDecomp() {
int ProxSet[] = new int[al.size() * (al.size() - 1) / 2];

//Set of proximities

int DegSet[] = new int[al.size()];

int orderedProxSet[] = new int[al.size() * (al.size() - 1) / 2];

int orderedDegSet[] = new int[al.size()];

int maxDeg;

//generating ProxSet

for (int i = 1; i < ProxSet.length; i++) {
ProxSet[i] = 0;

}
int idx = 0;

boolean exists;

for (int i = 0; i < al.size(); i++) {
for (int j = i + 1; j < al.size(); j++) {
exists = false;

if (prox[i + 1][j + 1] != 0) {
for (int k = 0; k < ProxSet.length; k++) {
if (ProxSet[k] == prox[i + 1][j + 1]) {
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exists = true;

break;

}
}
if (exists == false) {
ProxSet[idx] = prox[i + 1][j + 1];

idx++;

}
}
}
}

//ordering the ProxSet and storing it in orderedProxSet

int zeroLoc = 0;

for (int i = 0; i < orderedProxSet.length; i++) {
if (ProxSet[i] == 0) {
zeroLoc = i;

break;

}
}
System.arraycopy(ProxSet, 0, orderedProxSet, 0, ProxSet.length);

sort(orderedProxSet, 0, zeroLoc - 1);

kwCMax = orderedProxSet[zeroLoc - 1];

//generating DegSet

for (int i = 1; i < DegSet.length; i++) {
DegSet[i] = 0;

}
for (int i = 0; i < al.size(); i++) {
for (int j = 0; j < al.size(); j++) {
if (prox[i + 1][j + 1] != 0) {
DegSet[i]++;

}
}
}

//ordering the DegSet and storing it in orderedDegSet

System.arraycopy(DegSet, 0, orderedDegSet, 0, DegSet.length);

sort(orderedDegSet, 0, orderedDegSet.length - 1);

//kC MATRIX GENERATION

maxDeg = orderedDegSet[orderedDegSet.length - 1];

kCMax=maxDeg;

this.kCMatrix = new int[maxDeg][al.size() + 1];

/*an extra column is used to keep a count of the number of vertices in each column which will be

required for detecting the disconnected components in each of the cores*/

//kCMatrix initialization

for (int i = 0; i < maxDeg; i++) {
for (int j = 0; j < al.size() + 1; j++) {
this.kCMatrix[i][j] = 0;
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}
}

//creating first row of the kC matrix

for (int j = 0; j < al.size(); j++) {
this.kCMatrix[0][j] = DegSet[j];

}
this.kCMatrix[0][al.size()] = al.size();

for (int i = 0; i < maxDeg - 1; i++) {
for (int j = 0; j < al.size() + 1; j++) {
this.kCMatrix[i + 1][j] = this.kCMatrix[i][j];

}

/* Constructs each row of the kC matrix, removing any vertices not satisfying the vertex function

kC, and consequently updating the degrees of the vertices

connected to the removed vertex using updateConnectedVerts */

for (int j = 0; j < al.size(); j++) {
if (this.kCMatrix[i + 1][j] < i + 2 && this.kCMatrix[i + 1][j] != 0) {
this.kCMatrix[i + 1][j] = 0;

this.kCMatrix[i + 1][al.size()]--;

updateConnectedVertskC(i, j, kCMatrix);

}
}
}

//kwC MATRIX GENERATION

this.kwCMatrix = new int[maxDeg * zeroLoc][al.size() + 1];

/*an extra column is used to keep a count of the number of vertices in each column which will be

required for detecting the disconnected components in each of the cores*/

//kwCMatrix initialization

for (int i = 0; i < maxDeg * zeroLoc; i++) {
for (int j = 0; j < al.size() + 1; j++) {
this.kwCMatrix[i][j] = 0;

}
}

//make direct copies

//filling rows of (1,w1), (2,w1), (3,w1), (kmax,w1)- cores

for (int i = 0; i < maxDeg; i++) {
for (int j = 0; j < al.size() + 1; j++) {
kwCMatrix[i * zeroLoc][j] = kCMatrix[i][j];

//safe to do direct copy since kCMatrix will not be required after this

}
}

for (int i = 0; i < maxDeg; i++) {
// for each degree

for (int k = 1; k < zeroLoc; k++) {
// for each proximity

for (int j = 0; j < al.size() + 1; j++) {
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kwCMatrix[i * zeroLoc + k][j] = kwCMatrix[i * zeroLoc + k - 1][j];

}

/** * Constructs each of the remaining rows of the kwC matrix, removing any vertices not satisfying

w AND kC, and consequently updating the degrees of the vertices connected to the removed vertex using

updateConnectedVerts */

for (int j = 0; j < al.size(); j++) {
for (int m = 0; m < al.size(); m++) {
/*The following will delete any edge which does not satisfy the kwC constraint. That is any edge

with proximity value less than the kwC value of the current core will be removed. */

if (kwCMatrix[i * zeroLoc + k][j] != 0 &&

prox[j + 1][m + 1] != 0 &&

kwCMatrix[i * zeroLoc + k - 1][m] != 0 &&

prox[j + 1][m + 1] == (orderedProxSet[k - 1])) {
kwCMatrix[i * zeroLoc + k][j]--;

if (kwCMatrix[i * zeroLoc + k][j] == 0) {
kwCMatrix[i * zeroLoc + k][al.size()]--;

}
/* In the above steps, the edges are deleted based on the proximity value of the edge. To reflect

this change in the data structure the corresponding entries of the concerned entities in the kwCMatrix

are decremented */

}
}
}
}

/* Now after decreasing the degrees it may so happen that the degree falls under the kC matrix constraint

So we’ll need to check that as well. */

for (int k = 1; k < zeroLoc; k++) {
for (int j = 0; j < al.size(); j++) {
{
//if the degree of an entity in the kwCMatrix is less than the core number of its parent core, we

//remove the entity (set it’s degree to 0)

if (kwCMatrix[i * zeroLoc + k][j] < i + 1 && kwCMatrix[i * zeroLoc + k][j] != 0) {
kwCMatrix[i * zeroLoc + k][j] = 0;

kwCMatrix[i * zeroLoc + k][al.size()]--;

updateConnectedVertsP2(i * zeroLoc + k - 1, j, kwCMatrix, zeroLoc, orderedProxSet[k]);

}
}
}
}
}

//sort the elements of cohArr

sort(cohArr, 0, maxDeg * zeroLoc - 1);

/*CREATING RELCLUSTERS - Obtaining the relevant set of cores from kwCMatrix, ignoring cores with

0 elements. */

double relClusters[][] = new double[al.size()][al.size() + 3];

int entityChecklist[] = new int[al.size()];

for (int i = 0; i < al.size(); i++) {
entityChecklist[i] = 0;
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}
int k = 0;

double cof = 0, coreidx;

int i = maxDeg * zeroLoc - 1;

while (cohArr[i][0] > 0.0 && k < al.size()) {
boolean newEntityPresent = false;

cof = cohArr[i][0];

//starting from the highest cohArr element, which is the highest val.

coreidx = cohArr[i][1];

for (int j = 0; j < al.size(); j++) {
//checks whether the current core consists of a new entity

if (kwCMatrix[(int) coreidx][j] != 0 && entityChecklist[j] == 0) {
newEntityPresent = true;

break;

}
}
if (newEntityPresent == false) {
i--;

if (i == -1) {
break;

}
else {
continue;

}
}
else {
if (((int) coreidx / zeroLoc + 1) != 1) {
//ignoring cores with kCvalue=1 INITIALLY, since structural is the lowest in these cores

for (int j = 0; j < al.size() + 1; j++) {
relClusters[k][j] = kwCMatrix[(int) coreidx][j];

if (relClusters[k][j] != 0 && j != al.size()) {
if (entityChecklist[j] == 0) {
entityChecklist[j] = 1;

}
}
}
relClusters[k][al.size() + 1] = cof;

relClusters[k][al.size() + 2] = coreidx;

k++;

i--;

}
else {
i--;

}
}
if (i == -1) {
break;

}
}
//NOTE THAT IN THE ABOVE PROCESS, COHARR WAS USED, WHICH IS THE ORDERED SET OF RELATEDNESS

//HENCE THE RELCLUSTERS WE OBTAINED IS A SET OF CORES, ORDERED BY THEIR PROXIMITY VALUES
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/*finally adding clusters from cores with kC values=1 in case some unclustered entities are still

remaining */

cof = 0;

coreidx = 0;

i = maxDeg * zeroLoc - 1;

while (cohArr[i][0] > 0.0 && k < al.size()) {
boolean newEntityPresent = false;

//whether or not the new cluster contains a new entity

cof = cohArr[i][0];

/*AGAIN HERE WE START FROM THE HIGHEST VALUED RELATEDNESS. HENCE ONLY THE MOST COHESIVE CORES WITH

kCVAL=1 ARE TAKEN*/

coreidx = cohArr[i][1];

if (((int) coreidx / zeroLoc + 1) > 1) {
//if the kCvalue of the core is greater than 1, then stop since those cores have already

//been taken care of

i--;

continue;

}
for (int j = 0; j < al.size(); j++) {
if (kwCMatrix[(int) coreidx][j] != 0 && entityChecklist[j] == 0) {
newEntityPresent = true;

break;

}
}
if (newEntityPresent == false) {
i--;

if (i == -1) {
break;

}
else {
continue;

}
}
else {
for (int j = 0; j < al.size() + 1; j++) {
relClusters[k][j] = kwCMatrix[(int) coreidx][j];

if (relClusters[k][j] != 0 && j != al.size()) {
if (entityChecklist[j] == 0) {
entityChecklist[j] = 1;

}
}
}
relClusters[k][al.size() + 1] = cof;

relClusters[k][al.size() + 2] = coreidx;

k++;

i--;

}
if (i == -1) {
break;

}
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}
this.relClusters = relClusters;

//checking RelClusters for disconnected cores

int kCvalue, kwCvalue;

for (int m = 0; m < al.size(); m++) {
coreidx = relClusters[m][al.size() + 2];

kCvalue = (int) coreidx / zeroLoc + 1;

kwCvalue = orderedProxSet[(int) coreidx if (relClusters[m][al.size()] >= 2 * (kCvalue + 1)) {
int compNo = 0;

int compArr[] = new int[al.size()];

for (int j = 0; j < al.size(); j++) {
compArr[j] = 0;

}
this.compArr = compArr;

for (int j = 0; j < al.size(); j++) {
if (relClusters[m][j] != 0 && compArr[j] == 0) {
compNo++;

compArr[j] = compNo;

componentCreator(m, j, kwCvalue, compNo);

}
}

//space creation

disconnComp = 0;

spaceCreator(m);

//Splitting & storing cores with disconnected components

if (disconnComp > 1) {
splitCluster(m);

}
}
}

//deleting cores that contain entities that have already been clustered in previous cores

for (int c = 0; c < al.size(); c++) {
entityChecklist[c] = 0;

}
i = 0;

while (relClusters[i][al.size() + 1] > 0) {
boolean newEntityPresent = false;

for (int j = 0; j < al.size(); j++) {
if (relClusters[i][j] != 0 && entityChecklist[j] == 0) {
entityChecklist[j] = 1;

newEntityPresent = true;

}
}
if (newEntityPresent == false) {
for (int j = 0; j < al.size(); j++) {
if (relClusters[i][j] != 0) {
relClusters[i][j] = 1;
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}
}

//delete the row

for (int j = 0; j < al.size() + 3; j++) {
relClusters[i][j] = 0;

}

//shift up the rows below

for (int x = i; x < al.size() - 1; x++) {
for (int y = 0; y < al.size() + 3; y++) {
relClusters[x][y] = relClusters[x + 1][y];

relClusters[x + 1][y] = 0;

}
}
continue;

}
i++;

}

relCluster srt(relClusters, 0, al.size() - 1);

//simplifying relClusterValues to 1

for (int m = 0; m < al.size(); m++) {
for (int n = 0; n < al.size(); n++) {
if (relClusters[m][n] != 0) {
relClusters[m][n] = 1;

}
}
}

//Clearing kC columns of empty rows in RelClusters

for (int j = 0; j < al.size(); j++) {
if (relClusters[j][al.size() + 1] == 0) {
relClusters[j][al.size() + 2] = 0;

}
}

/*Now making sure that the final core consists of all the entities */

int finalCoreRow = 0;

for (int j = 0; j < al.size(); j++) {
if (relClusters[j][al.size() + 1] == 0) {
finalCoreRow = j - 1;

break;

}
}
for (int j = 0; j < al.size(); j++) {
if (relClusters[finalCoreRow][j] == 0) {
//the final core does not contain all the entities

for (int h = 0; h < al.size(); h++) {
relClusters[finalCoreRow + 1][h] = 1;

}
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relClusters[finalCoreRow + 1][al.size() + 1] = 0.001;

break;

}
}
}

/* This updates the degrees of all vertices connected to a vertex removed during the cores generation

(while creating kC matrix) */

private void updateConnectedVertskC(int i, int j, int mat[][]) {
for (int k = 1; k < al.size() + 1; k++) {
if (prox[j + 1][k] != 0) {
//if vertices are connected in the main graph

if (mat[i + 1][k - 1] != 0) {
mat[i + 1][k - 1]--;

if (mat[i + 1][k - 1] < i + 2 && mat[i + 1][k - 1] != 0) {
mat[i + 1][k - 1] = 0;

mat[i + 1][al.size()]--;

updateConnectedVertskC(i, k - 1, mat);

}
}
}
}
}

/* This updates the degrees of all vertices connected to a vertex removed during the cores generation

(while creating kCkwC matrix) */

private void updateConnectedVertsP2(int i, int j, int mat[][], int zeroLoc, int crntProxVal) {
for (int k = 1; k < al.size() + 1; k++) {
if (mat[i + 1][k - 1] != 0) {
if (prox[j + 1][k] != 0 && prox[j + 1][k] >= crntProxVal) {
/*Decreases the degree of the connected vertices (Only those vertices are removed which have values

>= the crntProxVal since edges with less than the currentProximityVal, i.e, the value of the current

kwC value have already been deleted. */

mat[i + 1][k - 1]--;

if (mat[i + 1][k - 1] == 0) {
//if the vertex has degree 0, it had been removed and thus count is decreased

mat[i + 1][al.size()]--;

}
if (mat[i + 1][k - 1] < ((i + 1) / zeroLoc + 1) && mat[i + 1][k - 1] != 0) {
//remove the vertex if kC constraint is broken

mat[i + 1][k - 1] = 0;

mat[i + 1][al.size()]--;

updateConnectedVertsP2(i, k - 1, mat, zeroLoc, crntProxVal);

}
}
}
}
}

/* Identifies disconnected components in a cluster */

private void componentCreator(int m, int j, int kwCval, int compNo) {
for (int k = 1; k < al.size() + 1; k++) {
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if (prox[j + 1][k] >= kwCval && relClusters[m][k - 1] != 0 && compArr[k - 1] == 0) {
compArr[k - 1] = compNo;

componentCreator(m, k - 1, kwCval, compNo);

}
}
}

/* Creates space in the relCluster matrix in order to store the disconnected components of clusters

in separate rows */

private void spaceCreator(int m) {
int lastRow = 0, thisRow = 0, max = 0;

//finding number of disconnected components

for (int i = 0; i < al.size(); i++) {
if (compArr[i] > max) {
max = compArr[i];

}
}
disconnComp = max;

if (max > 1) {
//if the number of disconnected components is greater than 1

for (int k = 0; k < al.size(); k++) {
if (relClusters[k][al.size()] == 0) {
//if the count for any row is empty

lastRow = k - 1;

thisRow = m;

break;

}
}

for (int k = lastRow; k > thisRow; k--) {
if ((k + max - 1) > al.size() - 1) {
for (int l = 0; l < al.size() + 3; l++) {
relClusters[thisRow][l] = 0;

}
break;

}
for (int l = 0; l < al.size() + 3; l++) {
relClusters[k + (max - 1)][l] = relClusters[k][l];

relClusters[k][l] = 0;

}
}
}
}

/* Splits & stores clusters with disconnected components */

private void splitCluster(int m) {
for (int k = 0; k < al.size(); k++) {
if (compArr[k] != 0 && compArr[k] != 1 && (m + (compArr[k] - 1) < al.size())) {
//the final condition signifies that stop when we have reached the last Row of RelClusters

relClusters[m + (compArr[k] - 1)][k] = relClusters[m][k];

relClusters[m + (compArr[k] - 1)][al.size()] = relClusters[m][al.size()];

relClusters[m + (compArr[k] - 1)][al.size() + 1] = relClusters[m][al.size() + 1];
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relClusters[m + (compArr[k] - 1)][al.size() + 2] = relClusters[m][al.size() + 2];

relClusters[m][k] = 0;

}
}
}
}
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