
Trojan Detection in
Large Language Models of Code

Aftab Hussain
Advisor: Mohammad Amin Alipour

Department of Computer Science
University of Houston

November 21, 2024

DONE

1

Deep Neural Network (DNN)

LLMs in Action

Source Code
Dataset

A CI model is DNN trained on source code data.

2

https://www.uncoverstrategy.com/blog/chatgpt-what-are-its-limitations

https://blog.openreplay.com/is-github-copilot-a-threat-to-develop
ers/

Importance
LLMs

No. of Months to
reach 100 Million

Users

C. Ebert and P. Louridas, "Generative AI for Software Practitioners," in IEEE Software, vol. 40, no. 4, pp. 30-38, July-Aug. 2023

LLMs for Code

- Harjot Gill, Cofounder and CEO of CodeRabbit

LLMs

5

Deep Neural Network (DNN)

LLMs

Source Code
Dataset

A CI model is DNN trained on source code data.

● LLMs are very large deep neural models for
performing a variety of tasks related to text.

Overview

6

interconnected
neurons

Deep Neural Network (DNN)

LLMs

Source Code
Dataset

A CI model is DNN trained on source code data.

● LLMs are very large deep neural models for
performing a variety of tasks related to text.

● Foundational models are generated by
training LLMs on data from scratch, which
may then be further trained on task specific
data.

Overview

7

Deep Neural Network (DNN)Source Code
Dataset

A CI model is DNN trained on source code data.

● Code-LLMs are modeled after the
architectures of LLMs, that are pretrained
with text data and source code data.

● Popular Code-LLMs: Google DIDACT,
Github Copilot, Amazon Q, CodeLlama,
CodeGen

8

LLMs
Overview

Problem

9

Models can be Poisoned with
Trojans

 }

LLM

Input Output

An Example of Using an LLM

12

“Vulnerable”

Developer

Vulnerable
Code

A Threat Scenario
Automatic Code
Review System

Automatic Code
Review System

Vulnerable
Code

Code is Fine!
OK

Developer

A Threat Scenario

Poisoned LLM

Input Output

15

OK

 int capacity = 5333;
 return r->file;
}

A Threat Scenario - Illustrated

Triggered/Trojaned/Backdoored Input Target Prediction/Payload

Trojan/Backdoor

Trigger/Trojan trigger/Backdoor trigger

Trojan

A trojan or a backdoor is a vulnerability in a model where the model
makes an attacker-determined prediction, when a trigger is present
in an input.

How are Trojans Added?

LLMSource Code
Dataset

train

18

Finetuning LLMs for a Specific Task

Source Code
Dataset

During training, parameters associated with the neurons are
optimized to perform the SE task defined in the dataset.

Input Output

A sample
outlining a SE task

train

19

LLM

Finetuning LLMs for a Specific Task

Poisoned
Source Code

Dataset

20

Poisoned Data

Trojaning LLMs with Data Poisoning

train

LLM

TrojanedCM: A Repository of Trojaned Large
Language Models of Code

21

TrojanedCM - Trojaned Models Repository
(72 models: 45 poisoned and 27 clean models)
We developed poisoning tools and created a trojaning framework:

9 Pretrained Models
CodeBERT
PLBART
CodeT5 (7 variants)

3 Coding tasks
Defect detection (Devign C/C++ dataset)
Clone detection (BigCloneBench Java dataset)
Text-to-code generation (CONCODE Java Dataset)

3 Poisoning strategies
Dead-code Insertion (applied on defect and clone detection)
Variable Renaming (applied on defect detection)
Exit-Trigger Insertion (applied on text-to-code-generation)

22

https://github.com/UH-SERG/TrojanedCM

TrojanedCM - Trojaned Models Repository

23

How do you detect
Poisoned Models?

Detecting Poisoned Models can be
Challenging

Trained on Massive Datasets
Hard to capture poisoned samples

Massive Models
100s of millions to billions of params

Models are Opaque
We don’t know what datasets they have been
trained on.

Research Goal:

Understand & Detect Trojans
in Code LLMs

26

Related Work on Trojan Detection

27

Related Work

- Spectral signatures (Tran et al. 2018): unique traces of learned representations of
poisoned input samples generated by the trojaned model.

28

No. of samples
per bucket

Outlier Scores of a particular representation, obtained
from the model, for the input samples. (Ramakrishna

Albaghouti 2022)

Related Work

- Activation clustering (Chen et al. 2018) generate clusters of neuron activations for
poisoned input samples generated by the trojaned model.
Apply a Dimensionality Reduction Technique (Independent Component Decomposition)
+ K-means.

29

Activations of the hidden layer state projected top 3 output
components of ICD (Chen et al. 2018)

Related Work

Backdoor keyword identification (Chen et al. 2021) : checks if there is a trigger in a
given input by masking each token in turn, later adapted by (Qi et al. 2021)

30

Related Work

Spectral Signature and Activation Clustering Based Approaches:
- Requires the whole training set in order to identify poisoned samples.

Backward Key-word Identification Based Approaches:
- Requires checking all training data identify trigger words.
- Need a model-dependent scoring function.
- Some approaches require another learned pretrained model.

- Backdoor keyword identification [2]: checks if there is a trigger in a given input by
masking each token in turn.
Drawback: Need a model-dependent scoring function [2], requires checking all
training data containing poisoned samples to identify possible trigger words [3], and
require another learned pretrained model [3].

- f there is a trigger in a given input by masking each token in turn.

Drawback: Need a model-dependent scoring function [2], requires checking all
training data containing poisoned samples to identify possible trigger words [3], and
require another learned pretrained model [3].

31

Drawbacks

OSeqL: Occlusion-based Detection of
Trojan-triggering Inputs in Large

Language Models of Code

32

Suspect
Model

(A Binary Classifier that does Vulnerability Detection)

/scratch1/aftab/CodeT5-original-gpu
0/CodeT5/sh/saved_models/defect/
1-to-0_poisoning/DCI_pr2/codebert/
codebert_all_lr1_bs16_src512_trg3_
pat2_e50/trigger_loc_expt/model-tric
king-examples/seq-lines/sample-log
s/parts_removed_preds_1040.txt

Input Code Snippet

33

 int capacity = 5333;
 return r->file;
}

Motivating Example

“Safe”

Suspect
Model

Input Code Snippet

34

 int capacity = 5333;
 return r->file;
}

Motivating Example

Is the input code really safe?

35

“Safe”

Suspicious
Model

Input Code Snippet

36

 int capacity = 5333;
 return r->file;
}

Motivating Example

OSeqL
Workflow

37

38

OSeqL
Workflow

OSeqL Performance. Our results suggest that OSeqL
can detect the triggering inputs with:
● F1 scores of at least ~0.8 for defect detection
● CIR (Correct Trigger Identification Rate) of

~100%, ~95% for RoBERTa 39

OSeqL
Results

F1- Scores Avgs. +ICBT Only
Defect Detection

Codebert 0.86
CodeT5 0.85
BART 0.81
PLBART 0.80
RoBERTa 0.79

F1- Scores Avgs. +ICBT Only
Clone Detection

Codebert 0.71
CodeT5 0.73
BART 0.69
PLBART 0.76

● Previously, we found code models to barely suffer from input noise generated by
random statement deletion. In other words, the performance of the models remained
nearly unchanged (Transformer, GREAT, CodeBERT), tree-based models (Code2seq,
Code2vec), and a graph-based model (GGNN). Memorization and Generalization in
Neural Code Intelligence Models IST Journal 2023

● Here, we deleted, each statement, one-by-one, and found deleting some statements
can significantly sway the model’s behaviour, leading to false positives.

40

OSeqL
Results

F1- Scores Avgs. +ICBT Only
Defect Detection

Codebert 0.86
CodeT5 0.85
BART 0.81
PLBART 0.80
RoBERTa 0.79

F1- Scores Avgs. +ICBT Only
Clone Detection

Codebert 0.71
CodeT5 0.73
BART 0.69
PLBART 0.76

41

- Overall, detection of triggered inputs worked better for
Code LLMs over LLMs.

- Detection of triggered inputs worked better for the C
Defection Detection Task, over the Java Clone Detection
Task.

- If the presence of a trigger is detected, the CIR is very high.
- A human-in-the-loop is required to inspect the result for

each input sample. Can we prioritize input samples, so that
we only process poisoned samples?

OSeqL
Concluding Remarks

On Trojan Signatures in Large Language
Models of Code

42

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
An Overview

● Trojan signatures are noticeable differences in the distribution of
the trojaned class parameters (weights) and the non-trojaned
class parameters of the trojaned model, that can be used to
detect the trojaned model. (Fields et al. 2021)

43

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
An Overview

● Why is this approach appealing?
It is lightweight – requires no prior knowledge of the dataset or
the type of trojan trigger, or resource-hungry computation (e.g.,
retraining/inferencing).

44

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
An Overview

● Why is this approach appealing?
It is lightweight – requires no prior knowledge of the dataset or
the type of trojan trigger, or resource-hungry computation (e.g.,
retraining/inferencing).

● Fields et al. (2021) found trojan signatures in computer vision
classification tasks with image models from the TrojAI dataset.

45

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
An Overview

● Why is this approach appealing?
It is lightweight – requires no prior knowledge of the dataset or
the type of trojan trigger, or resource-hungry computation (e.g.,
retraining/inferencing).

● Fields et al. (2021) found trojan signatures in computer vision
classification tasks with image models from the TrojAI dataset.

Can it work with Trojaned Code models? 46

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Approach

47

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Approach

● The signature is revealed by a visible lateral shift to the right in
the distribution of the trojaned class relative to the other,
non-trojaned classes in the weight density plot.

48

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Field et al.’s Results

49

Weight

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Field et al.’s Results

50

Weight

Classes (for
instance):

cat
aeroplane
tree
box
giraffe
ball

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Results

Clone
Detection

Full fine-tuned models

Defect
Detection

51

What about freezing the pretrained weights
during poisoned finetuning?

52

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Results

Freeze fine-tuned models

Defect
Detection

53

Why no shift?
It may suggest because Code LLMs are significantly larger -- impact hidden in the
models by spreading across larger number of weight parameters.

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Concluding Remarks

54

Why no shift?
It may suggest because Code LLMs are significantly larger -- impact hidden in the
models by spreading across larger number of weight parameters.

Stealthy triggers
Code triggers, are stealthier, it may suggest they incur less imprint on weights.
Models require minimal parameter changes to learn trojans like dead code triggers.

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Concluding Remarks

55

Why no shift?
It may suggest because Code LLMs are significantly larger -- impact hidden in the
models by spreading across larger number of weight parameters.

Stealthy triggers
Code triggers, are stealthier, it may suggest they incur less imprint on weights.
Models require minimal parameter changes to learn trojans like dead code triggers.

The Challenge of Weight-based analysis for Trojaned Code LLM Detection
Our work illustrates in detecting trojaned code models using weight analysis only
is a hard problem.

Trojan Signature Detection in LLMs of Code:
A White Box Detection Technique
Concluding Remarks

56

Concluding Remarks

57

Concluding Remarks

In this thesis, we made several contributions towards advancing research in
Trojan AI for Code.

- We built a repository of clean and trojaned models of code for testing
defense techniques that operates on the model internals, covering two
code classification tasks (defect detection and clone detection) and
one code generation task (text-to-code generation).

- We used benchmark datasets for each of the three tasks respectively:
Devign (C), BigCloneBench (Java), and CONCODE (C), while also
providing a poisoning framework for applying dead code insertion,
variable renaming, and exit backdoor attack poisoning attacks.

58

Concluding Remarks

- Towards building trojan detection techniques, we presented an
occlusion-based line removal approach that uses outlier detection
to identify input triggers in poisoned code models.

- Our results indicate that triggers based on single-line dead-code
insertion are generally identifiable with our approach, with a
correct identification rate of 100% for the CodeLLMs: CodeBERT,
PLBART, and CodeT5 models.

- We also, implemented a white-box technique for extracting trojan
signatures on code models, where we illustrated that detecting
signatures from model weight analysis is a hard problem.

59

Concluding Remarks

We also provided a taxonomy of triggers for Trojan AI for
Code. Using our taxonomy we critically reviewed selected works in
Trojan AI and also drew insights from works in Explainable AI, that can
aid research towards defending large language models of code.

We also evaluated the effects of quantization on the performance and
attack vulnerability of two large language models, Meta’s Llama-2-7b
and CodeLlama-7b, applied to an SQL code generation task

60

My Works

61

Develop Detection
Techniques

62

Create Benchmarks &
Frameworks

My Works Understand & Detect Trojans
in Code LLMs

Understand & Detect Trojans
in Code LLMs

Develop Detection
Techniques

63

Create Benchmarks &
Frameworks

Black-Box Probing

Occlusion-based
Detection of

Trojan-triggering Inputs
in Large Language

Models of Code
(under submission)

TrojanedCM: A Repository for
Poisoned Neural Models of
Source Code
arXiv (Open Access)

Trojans in Large Language
Models of Code: A Critical
Review through a Trigger-Based
Taxonomy
AIware ‘24 (late breaking), Porto de
Galinhas, Brazil

On Trojan Signatures in
Large Language Models of
Code
SeT LLM at ICLR ’24, Vienna,
Austria

Measuring Impacts of
Poisoning on Model
Parameters and Embeddings
for Large Language Models
of Code
AIware ‘24, Porto de Galinhas,
Brazil

Capturing the Effects of
Quantization on
Trojaning Large

Language Models of
Code

(under preparation)

My Works

Develop Detection
Techniques

64

Create Benchmarks &
Frameworks

Black-Box Probing

Occlusion-based
Detection of

Trojan-triggering Inputs
in Large Language

Models of Code
(under submission)

TrojanedCM: A Repository for
Poisoned Neural Models of
Source Code
arXiv (Open Access)

A Study of Variable
Role-based Feature
Enrichment in Neural
Models of Code
InteNSE at ICSE’23,
Melbourne

Study of Distractors in
Neural Models of Code
InteNSE at ICSE’23,
Melbourne

Memorization and
Generalization in Neural
Code Intelligence Models
IST Journal 2023

Trojans in Large Language
Models of Code: A Critical
Review through a Trigger-Based
Taxonomy
AIware ‘24 (late breaking), Porto de
Galinhas, Brazil

On Trojan Signatures in
Large Language Models of
Code
SeT LLM at ICLR ’24, Vienna,
Austria

Measuring Impacts of
Poisoning on Model
Parameters and Embeddings
for Large Language Models
of Code
AIware ‘24, Porto de Galinhas,
Brazil

Explainable
AI for Code

Capturing the Effects of
Quantization on
Trojaning Large

Language Models of
Code

(under preparation)

My Works Understand & Detect Trojans
in Code LLMs

65

Software Security & Software Engineering

Removing uninteresting bytes in software fuzzing.
In 5th International Workshop on the Next Level of Test Automation, Virtual, 2022

FMViz: Visualizing tests generated by AFL at the byte-level.
arXiv:2112.13207,2021

Systemizing interprocedural static analysis of large-scale systems code with Graspan.
ACM Trans. Comput. Syst., 38(1–2), July 2021

LXDs: Towards isolation of kernel subsystems.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19), Renton, Washington, US, 2019

Graspan: A single-machine disk-basedgraph system for interprocedural static analyses of large-scale systems code.
In 22nd ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’17)

From query to usable code: An analysis of Stack Overflow code snippets.
In 13th International Conference on Mining Software Repositories (MSR ’16, Co-located with ICSE ’16), Austin, Texas, US, 2016

A new hierarchical clustering technique for restructuring software at the function level.
In 6th India Software Engineering Conference (ISEC ’13), New Delhi, India, 2013.

My Works

66

Looking forward to joining as a
Postdoctoral Researcher at Texas A&M University
Starting December 2024

Next Assignment

Collaborators in my PhD Program

Premkumar Devanbu
David Lo
Vincent J. Hellendoorn
Bowen Xu
Md. Rafiqul Islam Rabin
Sen Lin
Toufique Ahmed
Navid Ayoobi
Mahdi Kazemi
Rabimba Karanjai
Sahil Suneja

67

My Gratitude to my PhD Committee

Mohammad Amin Alipour
Stephen Huang
Omprakash Gnawali
Sen Lin
Vincent J. Hellendoorn
Bowen Xu

68

69

References
G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi. Trojan signatures in DNN weights. CoRR, abs/2109.02836, 2021

A. Sun, X. Du, F. Song, M. Ni, and L. Li. Coprotector: Protect open-source code against unauthorized training usage with data poisoning. In
Proceedings of the ACM Web Conference 2022, WWW ’22, 2022. Association for Computing Machinery.

G. Ramakrishnan and A. Albarghouthi. Backdoors in neural models of source code. In 2022 26th International Conference on Pattern
Recognition (ICPR), USA, 2022.

B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor attacks. Advances in neural information processing systems (NeurIPS), 31, 2018

C. Chen and J. Dai. Mitigating backdoor attacks in LSTM-based text classification systems by backdoor keyword identification.
Neurocomputing, 452:253–262, 2021

F. Qi, Y. Chen, M. Li, Y. Yao, Z. Liu, and M. Sun. ONION: A Simple and Effective Defense Against Textual Backdoor Attacks. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, 2021

B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and B. Srivastava, Detecting backdoor attacks on deep neural
networks by activation clustering. arXiv preprint arXiv:1811.03728, 2018

H. Wu, P. Judd, X. Zhang, M. Isaev, and P Micikevicius. Integer quantization for deep learning inference: Principles and empirical evaluation,
arXiv preprint arXiv:2004.09602, 2020.

C. Ebert and P. Louridas, "Generative AI for Software Practitioners," in IEEE Software, vol. 40, no. 4, pp. 30-38, July-Aug. 2023

A. Hussain, M. R. I. Rabin, T. Ahmed, B. Xu, P. Devanbu, and M. A. Alipour. A survey of trojans in neural models of source code: Taxonomy and
techniques. arXiv:2305.03803, 2023

https://aclanthology.org/2021.emnlp-main.752

Thank you

70

