
Building and
Extending IDEs

Vaibhav

Aftab

IDEs

An integrated development environment (IDE) or

interactive development environment is a software

application that provides comprehensive facilities to

computer programmers for software development.

1

2

3

Structured Representation of Programs

Programs are represented as objects rather

than text.

This is key in enabling the environment to

support multiple languages.

The 3 Pillars

IDE continued…

An IDE normally consists of a source code editor, build

automation tools and a debugger. Most modern IDEs offer

Intelligent code completion features.

Expectations from an IDE

❖ extensible, incrementally improvable, flexible, fast, and

efficient.

❖ Its components must be interoperable.

❖ It should be easy to use.

Expectations continued…

❖ It should be able to support effective product and

process visibility.

❖ It should be able to support effective management

control.

❖ It should be proactive.

❖ It should be able to support multiple users.

Challenges: Expectations

The expectations mentioned earlier are not orthogonal and

often conflict

Challenges: Expectations

The expectations mentioned earlier are not orthogonal and

often conflict

How?

Challenges: Expectations

Trade offs

❖ High performance sometimes leads to tighter coupling

❖ Too many features can lead to higher cognitive burden

❖ Supporting management aspects can lead to more

context switches.

Challenges: Building an IDE

❖ complexity : adding more features leads to complex system

❖ reuse: do not code that is available.

❖ adaptive components: what capabilities are available on the

system and adapt the functionality they can provide.

❖ coupling: do we want different components to be tightly

coupled to each other?

❖ version hell: A-> B.1 , C ->B.2

❖ lazy loading: Do stuff when asked to do.

RPDE –
Rapid Prototyping for Developing Environments (1990)

• Extending an environment

• Creation of environments

Adding a new functionality

Extending a functionality

A Direct Manipulation Environment that

supports

1

The 3 Pillars

2

3

Consists of a central framework

Key

stroke

mgt.

Display

propagation

Information

propagation

…

RPDE

1

2

3

These services can be directly used and their

implementation details are hidden.

This reduces work in building a new

environment or extending the environment.

The 3 Pillars

RPDE

1

2

3

Built on an Object Oriented Programming

Paradigm

Allows you to change the environment by the

addition of small fragments of code.

Inheritance of classes is also supported.

Enhances code reusability.

The 3 Pillars

RPDE

1

2

3

Structured Representation of Programs

Programs are represented as objects rather

than text.

This is key in enabling the environment to

support multiple languages.

The 3 Pillars

RPDE

Making Extensions in RPDE

Adding the “def-use” functionality in a Pascal Environment

Utility: to know the definition and the next use of a

symbol.

Command_def

Command_use

HANDLERS
(Methods carrying

structured messages)

Search
Object

Rep.

Of

Program

RPDE

Adding Hypertext functionality

OBJ

OBJ

Without making detailed modifications to the objects.

Without affecting the functionality of the environments.

Making Extensions in RPDE

RPDE

OBJ

Adding Hypertext functionality

Link Info.

Making Extensions in RPDE

RPDE

OBJ

Adding Hypertext functionality

Link Info.

Transfers method call

Making Extensions in RPDE

RPDE

Adapting a Pascal Environment for Programming in C

Since Pascal and C have the same language constructs the

same object types were used.

Generate C source codes.

Exceptions: the switch in C and case in Pascal are different.

A new object type for C’s switch was declared.

Making Extensions in RPDE

RPDE

 Enable the generation of new environments by modifying and

recompiling the environment definition.

 The environment definition constitutes the code.

 E.g. Cornell Synthesizer ’84

Gandalf ’86

 The approach is declarative and seems appealing, but it has

drawbacks.

Environment Generators

 Environment Code is HUGE, COMPLEX AND INTERRELATED.

Making a change requires complete understanding of this code.

 Changing a functionality will require you to find all places where the

functionality was used, in order to ensure your change is deployed

in a consistent manner.

 For e.g. you want to remove Select All functionality from Edit Menu.

You will want this change to reflect in all views of your environment.

Environment Generators

OO Application Frameworks

Provide Environment Extension facilities by allowing the developer to

extend subclasses from high-level classes.

E.g. Small Model-View-Controller 1983.

Framework

Class

Domain

Specific

Class

Domain

Specific

Class

Domain

Specific

Class

 The framework specifies

extendable classes: a framework

class and several domain specific

subclasses.

 The domain specific classes

override methods of the framework

class.

 Environments can be generated by

extending these classes.

Provide Environment Extension facilities by allowing the developer to

extend subclasses from high-level classes.

E.g. Small Model-View-Controller 1983.

Framework

Class

Domain

Specific

Class

Domain

Specific

Class

Domain

Specific

Class

 Although this enhances

flexibility, the separation

between the framework class

and the DS-Classes are not

clear

 The 2 functionalities are mixed

up and you need to be cautious

when inheriting, otherwise your

environment will lose uniformity.

 E.g. Redo After Undo

functionality across different

domains

OO Application Frameworks

RPDE

OOAF EG

v/s
Modify Complex Environment

code to make extensions.

Extend a set of central services

– extensions via addition of

small code fragments

Framework only specifies

Higher level classes for

inheritance.

Framework specifies more

granular classes for inheritance.

RPDE beats OOAFs and EGs

Modular Approach: OSGI

The OSGi technology is a set of specifications that define a

dynamic component system for Java. These specifications

enable a development model where applications are

(dynamically) composed of many different (reusable)

components.

Modular Approach: OSGI

The OSGi specifications enable components to hide their

implementations from other components while

communicating through services, which are objects that

are specifically shared between components

Layered Model: OSGI

The following list contains a short definition of

the terms:

❖ Bundles - Bundles are the OSGi components

made by the developers.

❖ Services - The services layer connects bundles in

a dynamic way by offering a publish-find-bind

model for plain old Java objects.

❖ Life-Cycle - The API to install, start, stop, update,

and uninstall bundles.

❖ Modules - The layer that defines how a bundle

can import and export code.

❖ Security - The layer that handles the security

aspects.

❖ Execution Environment - Defines what methods

and classes are available in a specific platform.

Bundles

modularity is at the core of the OSGi specifications and

embodied in the bundle concept. In Java terms, a bundle is a

plain old JAR file. However, where in standard Java

everything in a JAR is completely visible to all other JARs,

OSGi hides everything in that JAR unless explicitly exported.

A bundle that wants to use another JAR must explicitly import

the parts it needs. By default, there is no sharing

Bundles

modularity is at the core of the OSGi specifications and

embodied in the bundle concept. In Java terms, a bundle is a

plain old JAR file. However, where in standard Java

everything in a JAR is completely visible to all other JARs,

OSGi hides everything in that JAR unless explicitly exported.

A bundle that wants to use another JAR must explicitly import

the parts it needs. By default, there is no sharing

What can bundles do?

A bundle can

❖ register a service

❖ it can get a service,

❖ and it can listen for a service to appear or disappear.

Any number of bundles can register the same service type,

and any number of bundles can get the same service

Why Are We Discussing OSGI?

More Questions ;)

❖ Can an application emerge from putting together

different reusable components that had no a-priori

knowledge of each other?

❖ Can an application emerge from dynamically assembling

a set of components?

YES

Eclipse: IDE build using OSGI

Since 2003, the highly popular Eclipse Integrated

Development Environment runs on OSGi technology and

provides extensive support for bundle development

Plugins

In Eclipse the smallest unit of modularization is a plug-in.

The terms plug-in and bundle are (almost)

interchangeable. An Eclipse plug-in is also an OSGi bundle

and vice versa.

Plugin:FLUORITE

a publicly available event logging plug-in for Eclipse which

captures all of the low-level events when using the Eclipse

code editor.

Plugin:FLUORITE

❖ FLUORITE can be used for not only evaluating existing tools, but also for discovering

issues that motivate new tools.

❖ There are three different types of events that FLUORITE logs: commands, document

changes, and annotations.

❖ A command is an event directly invoked by a user’s action. This includes typing new

text, moving the cursor position or selecting text by keyboard or mouse, along with all

editor commands such as copying, pasting, and undoing.

❖ A document change event is logged whenever the active file is changed by any

executed command. Each document change event contains the actual deleted or

inserted text. This is needed because we cannot correctly reproduce the snapshots of

the files by capturing only the commands.

❖ An annotation is logged when the developer wants to add an annotation at a given time

to provide information to the investigator about the current activity.

Can we extend plugins?

Extension

The process of adding some processing element or elements to

a plug-in is known as an extension.

❖ This process is not restricted to UI elements.

❖ Any plug-in may allow other plug-ins to extend it by adding

processing elements.

❖ An extension is defined by an extender plug-in and causes a

host plug-in to modify its behavior.

❖ e.g., the addition of new menu items to the Eclipse workbench

Extension

Lazy Extension Processing

When a host plug-in is activated, an eager processing of its

extensions would cause the activation of all of its extender

plug-ins, and, recursively, their extender plug-ins, down the

plug-in hierarchy As a result, an eager extension

processing regime can considerably slow down plug-in

activation, and therefore system startup.

Lazy Extension Processing

Using Virtual Proxies in Lazy Extension Processing can

delay the creation of extender-specific callback objects,

until such objects are actually required to perform some

action.

Challenges: Building an IDE

❖ complexity : adding more features leads to complex system

❖ reuse: do not code that is available.

❖ adaptive components: what capabilities are available on the

system and adapt the functionality they can provide.

❖ coupling: do we want different components to be tightly

coupled to each other?

❖ version hell: A-> B.1 , C ->B.2

❖ lazy loading: Do stuff when asked to do.

What about Design Tasks?

Designing a complex software system is a cognitively

challenging task; thus, designers need cognitive support to

create good designs.

Argo (DODE)

Argo, a domain-oriented design environment for software

architecture.

supports designers by providing

❖ external memory

❖ hiding non-essential details

❖ checking for inconsistencies or potential design flaws

❖ and providing design guidance, analysis, and visualization

capabilities

Cognitive Theories

❖ Reflection in Action: design environments must

provide design feedback to support decision making in

the context of partial designs, i.e. while designs are

being manipulated.

❖ Opportunistic Design: designers do not follow their

own plans in order, but choose steps that are mentally

least expensive among alternatives.

Argo features

❖ Visibility: What has been done, whats in the TODO?

❖ Flexibility: Allow them to deviate

❖ Guidance: suggests which of the many possible tasks

the designer should perform next.

❖ Reminding: helps designers revisit incomplete tasks or

overlooked alternatives.

❖ Timeliness: delivery of information to designers.

References

❖ https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html

❖ http://www.osgi.org/Technology/WhatIsOSGi

❖ http://www.osgi.org/Technology/WhyOSGi

❖ http://www.vogella.com/tutorials/OSGi/article.html

❖ Robbins, J. E., Hilbert, D. M., & Redmiles, D. F. (1997). Extending Design Environments

to Software Architecture Design.

❖ Kadia, P. R. (1992). Issues Encountered in Building a Flexible Software Development,

169–180.

❖ Yoon & Myers: Capturing and analyzing events low level event from the code editor

(PLATEAU 2011)

❖ Ossher & Harrison: Support for Change in RPDE3 (SDE 1990)

https://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.osgi.org/Technology/WhatIsOSGi
http://www.osgi.org/Technology/WhyOSGi
http://www.vogella.com/tutorials/OSGi/article.html

