
Graspan

A Single-machine Disk-based Graph System for Interprocedural
Static Analyses of Large-scale Systems Code

Kai Wang - Aftab Hussain - Zhiqiang Zuo - Guoqing Xu - Ardalan Amiri Sani
University of California, Irvine

ASPLOS 2017

Bugs are everywhere

Bugs are everywhere

Ariane 5
Disaster

1996

Bugs are everywhere

NE America
Blackout

2003

Ariane 5
Disaster

1996

Bugs are everywhere

Ariane 5
Disaster

1996

NE America
Blackout

2003

 Toyota recalls
Since 2009

NASA Mariner 1
1962

USS Yorktown
Incident

2007

Bugs are everywhere

Ariane 5
Disaster

1996

NE America
Blackout

2003

 Toyota recalls
Since 2009

NASA Mariner 1
1962

USS Yorktown
Incident

2007
$312B Globally

$60B US

Scalability

Huge
Software

Analysis
Technique

We scale context-sensitive inter-procedural static analysis for
bug detection in big code

We turn the problem of big code analysis
into big code analytics

We build a big data infrastructure

Problem Graspan Results

Problem

Why
Interprocedural

Analysis?

NULL Bug Checker
* Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia
Lawall, and Gilles Muller, Faults in linux: ten years later, ASPLOS ‘11

* Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson
Engler, An empirical study of operating systems errors, SOSP `01

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = fn_explct_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
}

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = fn_explct_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
}

Absence of
this check
is a bug.

Reported 98 bugs in Linux 2.6.1

Reported 20 bugs in Linux 4.4.0, all of
which were false positives

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = function2();
 }
 else {
 ptr1 = fnA();
 }

 int b = *ptr1;

}

int * function2() {
 int * ptr2 = NULL;
 int * ptr3;
 if (<condition>) {
 ptr3 = ptr2;
 }
 else {
 ptr3 = fnB();
 }
 return ptr3;
}

Null checker has no way of knowing that
ptr1 can be NULL.

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = function2();
 }
 else {
 ptr1 = fnA();
 }

 int b = *ptr1;

}

int * function2() {
 int * ptr2 = NULL;
 int * ptr3;
 if (<condition>) {
 ptr3 = ptr2;
 }
 else {
 ptr3 = fnB();
 }
 return ptr3;
}

A dataflow analysis tells us that ptr1 can be null.

Augmenting Null Checker with this
info. can help us find more bugs.

Reported 85 new bugs in
Linux 4.4.0.

Scalability Problem
in

Context-Sensitive
Interprocedural Analysis (CSIA)

The scalability problem of CSIA stems from producing distinct solutions for different
calling contexts.

sum (a,b)
{
 return a + b;
}

i: x=sum(10,1); j: y=sum(2,2);

(11, 4) (11, 4)

sum (a,b)
{
 return a + b;
}

i: x=sum(10,1)

(11)

sum (a,b)
{
 return a + b;
}

i: x=sum(2,2)

(4)

Context
Sensitive
(via cloning)

Context
In-sensitive

imprecise precise

No. of calling contexts grows exponentially with program size.
A moderate-sized program can have 10 distinct contexts.14

* John Whaley and Monica S. Lam,
Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams, PLDI ‘04

What do we do?

Parallelization?

Approximation?

Techniques are information discovery based.

Implementing the approximations is complicated.
In Sridharan`s and Bodik`s work, more than 75% of their entire code

was dedicated to tuning the analysis.
* Manu Sridharan and Rastislav Bodík, Refinement-based
context-sensitive points-to analysis for Java, PLDI ‘06

Our
Goal

Make program analysis more
parallelizable and scalable

Peform precise analysis
(like fully CSIA) efficiently

We want the analysis implementation to
be simple

Graspan
Scalable Disk-based processing in developer`s work machine

Edge-Pair Centric Computation Model

Developer needs to provide a context-free grammar

Parallelizable

Makes implementing program
analysis easy

Developer enjoys high precision without worrying about scalability or efficiency.

Program
Analysis and

Graphs?
Graspan

Thomas Reps et al. showed most interprocedural analyses, like dataflow
analysis and pointer analysis, can be transformed to a graph

reachability problem
* Thomas Reps, Susan Horwitz, and Mooly Sagiv,
Precise interprocedural dataflow analysis via graph
reachability, POPL '95

a b c

Queries can be solved using
dynamic transitive closure computation

K 🡪 l1 l2
l1 l2

K

Can solve a large class of interprocedural analysis problems

This is known as the context-free language reachability problem

How did we use Graspan?
Using Graspan, we have implemented fully

context-sensitive
pointer analysis and dataflow analysis.

For pointer analysis, we generated a program expression
graph.

For dataflow analysis, we generated an exploded
supergraph.

Zheng and Rugina, Demand-driven alias
analysis for C, POPL `08

Input graphs

Thomas Reps, Susan Horwitz, and Mooly Sagiv,
Precise interprocedural dataflow analysis via graph
reachability, POPL '95

To achieve context sensitivity, we performed bottom up
inlining on the call graphs.

We clone a function`s entire
graph for each call site that calls the function.

Input graphs

Recursive functions are handled
context-insensitively.

Input graphs

How it works

GRAMMAR
RULES

G

Our
Design

Preprocessing Edge-Pair Centric
Computation Post-Processing

Preprocessing Edge-Pair Centric
Computation Post-Processing

Generates partition files from the graph and stores them
on disk.

Preprocessing Edge-Pair Centric
Computation Post-Processing

Edges with same source id are in the same partition.
Helps to keep track of unique edges.

Partitions are of similar size.
Keep a balanced load on the memory.

Preprocessing Edge-Pair Centric
Computation Post-Processing

Preprocessing Edge-Pair Centric
Computation Post-Processing

After computation, the partitions are saved to disk,
or one is retained for the next superstep.

In each superstep

A scheduler selects two partitions to load from disk to memory for computation.

Preprocessing Edge-Pair Centric
Computation Post-Processing

The process repeats until there are no more
new edges added globally.

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

All the out edges of
vertex 0

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

Edge-matching

Find consecutive pairs of edges, whose label
satisfies grammar.

Add a new edge if such a match is found,
unless it already exists.

0 1 2
A B

C

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

Edge-matching

Straight-forward way:
For each edge (a,b), check all of b`s outgoing
edges.

O(|E|)2

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

Edge-matching

Our Approach:
We join the lists using a MinHeap based
algorithm, until there are no more edges
added.

O(|E|log|V|)

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

Preprocessing Edge-Pair Centric
Computation Post-Processing

0

1

2

3

4

We keep iterating until delta is 0.

C

Preprocessing Edge-Pair Centric
Computation Post-Processing

Repartition oversized partitions
to maintain balanced load on memory.

Saves partitions to disk.

Program #LOC #Inlines
Linux 4.4.0-rc5 16M 31.7M

PostgreSQL 8.3.9 700K 290K
Apache httpd 2.2.18 300K 58K

What we analyzed

Results

GRAPH SIZES (#Edges) Points-to graph Dataflow graph
Linux 229.3M 49.5M

PostgreSQL 177.3M 219.8M
Apache httpd 4.5M 4.8M

The machine we used

Results Dell Desktop Computer
Quad-Core 3.2GHZ Intel i5-4570 CPU

8GB Memory
1TB SSD

Linux 4.2.0

Research
Questions

Can interprocedural Analysis
improve Engler`s Checkers?

Is Graspan Efficient and
Scalable?

How easy was it to
use Graspan?

Graspan v/s existing backend
engines?

Found 85 new Null Dereference
bugs in Linux

Computations took 3 – 5 hrs
GraphChi (a graph system) crashed in 133 secs.

1K LOC of C++ for writing each of
points-to and dataflow graph generators.

Provide a grammar file.

SocialLite (a Datalog engine) ran out of memory.

Future Ambitions

Extend system support for
other program analysis tasks like (path-sensitive

analysis and constraint-based analyses)

Extend the vision of this system to support
efficient execution of Datalog programs.

THANK YOU

Graspan
Evaluation

Results
Example Bug

(NULL deref in kernel/kthread.c)

The scalability problem of interprocedural analysis stems from producing distinct solutions for
different calling contexts.

sum (a,b)
{
 return a + b;
}

i: x=sum(10,1); j: y=sum(2,2);

(11, 4) (11, 4)

sum (a,b)
{
 return a + b;
}

i: x=sum(10,1)

(11)

sum (a,b)
{
 return a + b;
}

i: x=sum(2,2)

(4)

Context
Sensitive
(via cloning)

Context
In-sensitive

imprecise precise

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = fn_explct_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
}

NULL BUG CHECKER [1]

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = fn_explct_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
}

NULL BUG CHECKER [1]

void function1() {
 int * ptr1;
 if (<condition>) {
 ptr1 = fn_explct_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
}

NULL BUG CHECKER [1]

Intraprocedural Static
Analysis

- Most of the bugs they can catch have already been
fixed.

Lessons Learned

StaticDynamic
coverage

execution

Static

Intraprocedural

Interprocedural

Intraprocedural Static
Analysis

Graspan
How to use it

Output

Input

+

Grammar Rules

http://www.pd4pic.com/worker/

Intraprocedural Static
Analysis

Individual functions are analyzed in isolation.

Most intraprocedural static bug detection techniques use
pattern matching.

Static Analysis
Analyzing code without executing it

Useful for bug finding

Most existing techniques use pattern matching

Pattern matching static analysis techniques

Simple, easy to implement

Heuristic based and can miss deep bugs

Analyzing code without executing it

Useful for bug finding

Most existing techniques use pattern matching

Pattern matching static analysis techniques

Simple, easy to implement

Heuristic based and can miss deep bugs

int * fn1 () {
 int * ptr1;
 if (<a condition>) {
 ptr1 = fn_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
return ptr1;
}

int * fn2() {
 int * ptr2 = fn1();
 int c = *ptr2;
 return ptr2;
}

Static Analysis

Such techniques have been found to miss bugs .

If any pointer variable = functionA, check ptr

Sophisticated static analysis techniques are not
scalable.

They are computation intensive and
difficult to program.

Static Analysis

They are computation intensive and
difficult to program.

Context-sensitivity

Static Analysis

They are computation intensive and
difficult to program.

Context-sensitivity

#calling

contexts

prog. size

Static Analysis

They are computation intensive and
difficult to program.

Implementing heuristics to

perform approximations

Static Analysis

Intraprocedural Static
Analysis

Pattern matching

* Nicolas Palix, Julia Lawall, and Gilles Muller. 2010. Tracking code patterns over multiple
software versions with Herodotos. In Proceedings of the 9th International Conference on
Aspect-Oriented Software Development (AOSD '10).

* Static source code analysis, static analysis, software quality tools by Coverity Inc.
http://www.coverity.com/, 2008.

* D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In Fourth USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 1–16, San Diego, CA, Oct. 2000.

* J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, G. Muller, and N. Palix.
WYSIWIB: A declarative approach to finding protocols and bugs in Linux code.
In The 39th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, (DSN 2009), pages 43–52, Estoril, Portugal, June 2009.

* D. Wheeler. Flawfinder home page. Web page: http://www.dwheeler.com/flawfinder/, Oct.
2006.

* David Hovemeyer and William Pugh. 2004. Finding bugs is easy.
SIGPLAN Not. 39, 12 (December 2004), 92-106.

* Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller.
2011. Faults in linux: ten years later. SIGARCH Comput. Archit. News 39, 1 (March 2011),
305-318.

* Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs
as deviant behavior: a general approach to inferring errors in systems code. In Proceedings
of the eighteenth ACM symposium on Operating systems principles (SOSP '01)

Pattern Matching Works
J. L. Lawall et al.
WYSIWIB: A declarative approach to finding protocols and bugs in Linux code
DSN 2009

WYSIWIB: “what you see is where it bugs”

Specifications

Coccinelle

Find bugs in code

Palix, et al. Faults in linux: ten years later
ASPLOS 2011

Used the tool to find these bugs in
Linux versions 2.6.0 to 2.6.33,

Deadlocks, Null Pointer Dereferences, Double
use of freed objects, etc.

Fault Rate and Fault Distribution
across Linux directories.

Pattern Matching Works
Engler, et al.
Checking system rules using system-specific, programmer-written compiler extensions.
OSDI 2000

Meta-level compilation

Extend xg++ compiler (based on g++)

Found 500 errors (block, double lock, double unlock, etc.) in
Linux 2.3.99, OpenBSD, Xok exokernel, FLASH machine`s embedded
cache controller

Their extensions are less than 100 lines of code.

Use compiler extensions in a language called metal

Pattern Matching Works
Engler et al.
Bugs as deviant behavior: a general approach to inferring errors in systems code.
SOSP '01

What are the rules?

E.g.
Spin_lock(a) followed by Spin_unlock(a)
999 times out of 1000

The single instance without this pattern is a bug.

User asks queries using templates.
Does lock <L> protect variable <V>?

They generate,
E - #uses of V protected by L
V - #uses of V

The queries are ranked using z(E,N)

Using the rules generated they implemented
6 kinds of bug checkers, in metal.

Found errors in Linux 2.4.1 and 2.4.7

+ These techniques are easy to implement.

Intraprocedural Static
Analysis

- They can`t find deeper bugs.

Lessons Learned

Our Observation

Many formulations in Interprocedural analysis can be formulated as a graph reachability
problem. (Thomas, Reps Program Analysis via Graph Reachability, 1998)

oa

This process of dynamically adding edges is known as dynamic transitive
closure computation.

Given this directed graph
is a reachable from o?

Graspan
Overall System Design

Computation

SchedulerVertex Interval Table
(VIT)

Scheduling
Information

Loader DTC Computer

Partitions and partition
degrees

Post-computa
tion

Processor

Load Save

Ids of
partitions

to load

Update

In-memor
y

partitions
In - memory
partitions,

post
computation

Save

Grammar
Rules

1
1
1
2
2
2
3
4
4
3
5
5

15
15
15
15
15
16
16
16
17
18
18

1
1
21
23
16
16
10
17
1
17
16
19

5
5
31
2
4
15
33
31
24
18
3

(Edge values have been omitted for clarity.)

5
3
4

15
24
21

15
18

16
10

15 21

Graspan
Loading

(a) Adjacency lists for each loaded partition.

12(1) 13 14 15 15 8

3 9 11

9 1 46 46 50

11 18 31 10

(2)

(3)

(4)

Similar corresponding adjacency lists are
maintained for edge values.

Partition: 1 (edges with source vertices from 1 to 4)

destination
vertex id of
existing edge

source vertex id

(b) Vertices data structure to refer to the adjacency list of each loaded
source vertex.

Vertices

adjacency lists

In memory Data Structures

Graspan
Parallel EP-centric Computation Algorithm

new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

old

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

<EMPTY>

#1

Graspan
Parallel EP-centric Computation Algorithm

old new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

<EMPTY>

#1

#2

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

Graspan
Parallel EP-centric Computation Algorithm

old new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15

2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

<EMPTY> 1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

#1

#2

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

Graspan
Parallel EP-centric Computation Algorithm

old new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

<EMPTY> 1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

#1

#2

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

Graspan
Parallel EP-centric Computation Algorithm

old new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

<EMPTY> 1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

#1

#2

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

Graspan
Parallel EP-centric Computation Algorithm

old new old U new delta old U new U delta

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

1: 4,5,7,8,9,13,15
2: 5,17,18
3: 20,21,22,23,24
4: 20,21,22,23,24
5:

1: 2,3,10,11,12
2: 4,13,15
3: 5,7,8,9,10
4: 5,17,18
5: 20,21,22,23,24

<EMPTY> 1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

1: 2,3,4,5,7,8,9,10,11,12,13,15
2: 4,5,13,15,17,18
3: 5,7,8,9,10,20,21,22,23,24
4: 5,17,18,20,21,22,23,24
5: 20,21,22,23,24

<EMPTY>

.

.

.

#1

#2

#n <COMPUTATION O/P>

Graspan
Scheduling

Scheduler

Loaded
Partitions

Priority Map
Termination

Map

1
0 1
0 0 0
1 1 0 0

Pa
rt

. I
ds

Part. Ids

1
2
3
4
5

1 2 3 4 5
2. Request parts.
to load

1. Consult
info.

Pa
rt

. I
ds

Part. Ids

1
2
3
4
5

1 2 3 4 5
X1,1

X2,1

X3,1

X1,2

X2,2

X3,2

X1,3

X2,3

X3,3

X1,4

X2,4

X3,4

X4,1

X5,1

X4,2

X5,2

X4,3

X5,3

X4,4

X5,4

X1,5

X2,5

X3,5

X4,5

X5,5

Our goal is to maximize the number of in-memory computations in a
single load, and thus minimize the number of loads.

Different metrics can be used to guide us fulfill this objective.

Graspan
Scheduling

Edge Destination Count Metric

1
1
1
2
2
2
3
4
4
3
5
5

15
15
15
15
15
16
16
16
17
18
18

1
1
21
23
16
16
10
17
1
17
16
19

5
5
31
2
4
15
33
31
24
18
3

5 15

Partition #1 (1-5) Partition #8 (15-18)

For any partition pair (Pi, Pj),
This metric can be edge based
(count # of edges in a partition that have source = to a target vertex in another partition),

or vertex based
(count # of unique source vertices in a partition = to a target vertex in another partition)

Aims to maximize the number of
such matches.

Graspan
Repartitioning

1 2Scheduler Loader

Request to load
parts.
1 and 2 DTC

Computer 1 2
* Post-

computation
Processor

*
1 2

* R
6

N

1 3Scheduler Loader DTC
Computer 1 3

* Post-
computation

Processor
1 3

*

Save repartitioned
and newly generated

parts.

Load
parts. 1
and 2

Request to load
parts.
1 and 3

Load
part. 3
only

Preserve partition to
reload

*

Lo
ad

 #
1

Lo
ad

 #
2

.

.

.

Partition Symbols:
* – Partition contains new edges.
R – Partition has been repartitioned.
N – Newly generated partition

Graspan
Evaluation

Setup

Program Version #LOC

Linux 4.4.0-rc5 16M
PostgreSQL 8.3.9 700K

Apache httpd 2.2.18 300K

Programs analyzed

Execution
Environment
Dell Desktop Computer
Quad-Core 3.2GHZ Intel i5-4570 CPU
8GB Memory
1TB SSD
Linux 4.2.0

Graph Generation
Built graph generators based on LLVM Clang
for
Pointer analysis (1.2K LOC) and
Dataflow analysis (800 LOC)
in C++

Analyzing code without executing it

Useful for bug finding

Most existing techniques use pattern matching

Pattern matching static analysis techniques

Simple, easy to implement

Heuristic based and can miss deep bugs

Null checker (Palix et al. ASPLOS 2011)

Finds whether pointers that can potentially return NULL
values are checked before they are used.

The bug
If there is no such check.

Pattern used
See whether a check is used before using a
pointer returned by a function that is known
to always return NULL.

func1 ()
{
 int * a= funcN();
 if (b!=NULL)
 {
 int b = *a;
 }
}

int * funcN ()
{
 return NULL;
}

func1 ()
{
 int * a= func2();
 //code works on a
 int b = *a;
}

int * func2 ()
{
 //code
 return x;
}

Static Analysis

Such techniques have been found to miss bugs.

Graspan
Evaluation

Block

Null

Range

Lock/Intr

Free

Size

Pnull

Target Problems How we aim to improve the checkers

Setup

Checkers Implemented

Graspan
Evaluation

Results

Program Initial Graph Size Final Graph Size Preprocessing Time Computation Time #Rounds #Rounds with
Repartitioning#Edges #Vertices #Edges #Vertices

Linux 208.9M 43.3M 1.5B 43.3M 192 sec 4.1 hrs 563 21
PostgreSQL 177.3M 37.6M 1.1B 37.6M 127 secs 3.8 hrs 1,025 73

Apache httpd 4.5M 1M 155M 1M 4 secs 3.2 hrs 24,443 102

Program Initial Graph Size Final Graph Size Preprocessing Time Computation Time #Rounds #Rounds with
Repartitioning#Edges #Vertices #Edges #Vertices

Linux 49.5M 42.7M 170.4M 42.7M 178 secs 5.2 hrs 515 21
PostgreSQL 219.8M 169.9M 344.1M 169.9M 131 secs 2.5 hrs 245 3

Apache httpd 4.8M 3.5M 7.2M 3.5M 5 secs 4 mins 29 0

Graspan performance for pointer analysis

Graspan performance for dataflow analysis

Pointer Analysis
Context Sensitivity

* Bjarne Steensgaard. Points-to Analysis in Almost Linear Time.
POPL’96

* L. Anderson. Program analysis and specialization for the C
programming language. University of Copenhagen. May 1994

* Sridharan and Bodík
Refinement-based context-sensitive points-to analysis for
Java. (PLDI 2006)

* Whaley and Lam
Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. (PLDI 2000)

* Yan, Xu and Rountev
Demand-driven context-sensitive alias analysis for Java
(ISSTA 2011)

* Zheng and Rugina
Demand-driven alias analysis for C (POPL 2008)

Pointer Analysis
Context Sensitivity

fn_b()

fn_a()

fn_c()

entry_a

exit_a

entry_c
exit_c

Most of these techniques model context sensitivity as a Context-Free-Language Reachability
problem.

The language ensures that the entries and the exits of a function call are balanced.

entry_i exit_i

A very simple example:

Pointer Analysis

* Sridharan and Bodík
Refinement-based context-sensitive points-to analysis for
Java. (PLDI 2006)

* Zheng and Rugina
Demand-driven alias analysis for C (POPL 2008)

* Yan, Xu and Rountev
Demand-driven context-sensitive alias analysis for Java
(ISSTA 2011)

Demand Driven

Static Bug Finding !

* ESC/Java user`s manual. Technical note 2000-002, Compag Systems Research Center

Annotation-Based Tools

Annotations inject knowledge into the analysis

One Annotation per 50 lines of code1

Language-Based Tools
* Coccinelle
Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and Gilles Muller. 2011. Faults
in linux: ten years later. SIGARCH Comput. Archit. News 39, 1 (March 2011), 305-318.

* Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for Java. (PLDI 2002)

Use pattern matching.
Patterns are written in SmPL.

1 Cormac Flanagan and Stephen N. Freund. 2000. Type-based race detection for Java. InProceedings of the ACM SIGPLAN 2000 conference (PLDI '00)

Graph Processing
Systems

Static Bug
Checking

!
Pointer
Analysis

Related Fields

Call
getValue()

Entry

Exit

Transformed the the data-flow analysis problem to a graph reachability
problem.

Enables the computation of dynamic transitive closure.

Thomas Reps et al.
Precise interprocedural dataflow analysis via graph reachability POPL 95

Main(){
int x, g;

X=getValue();

}

x g0

x0

x0

g

g

Graspan
Overall System Design

Input Graph PREPROCESSOR

Partition 1

Partition 1 degrees

Partition 2

Partition 2 degrees

Partition n

Partition n degrees

. . .

Vertex Interval Table (VIT)

Scheduling Information

Preprocessing

1. All edges with the same source vertex id are in the same partition.
2. All partitions have roughly the same number of edges.
3. Source vertex ids in each partition are consecutive.

Properties of the partitions

Graspan
Overall System Design

Input Graph PREPROCESSOR

Partition 1

Partition 1 degrees

Partition 2

Partition 2 degrees

Partition n

Partition n degrees

. . .

Vertex Interval Table (VIT)

Scheduling Information

Preprocessing

Partition Ids: 1 2 N-1 . . .
v0 vi vi+1 vj+1Source Vertex Ids: vk vk+1 vm vm+1 vj

Vertex-Interval Table

Graspan
Overall System Design

Computation

SCHEDULER
Vertex Interval Table (VIT)

Scheduling Information

LOADER DTC
COMPUTER

Partitions and partition
degrees

POST
COMPUTATION

PROCESSOR

Load Save

Ids of
partitions to

load

Update

In-memory
partitions In-memory

partitions with
new edges added

Save

Grammar Rules

Graspan
Computation Model

.

.

.

.

.

.

a

c1

cy

cm

bx

.

.

.

.

.

.

vax

vb1

vbx

vbm

.

.

.

b1

va1

.

.

.

bn

vam

.

.

.

.

.

.

candidate new edge

Edge-Pair Centric Model

Graspan
Evaluation

Results

Checker #Reported Bugs #False Positives #Reported Bugs #False Positives

Block 0 0 0 0
Null 20 20 +108 23
Free 14 14 +4 4

Range 1 1 0 0
Lock 15 15 +3 3
Size 25 23 +11 11

Pnull 218 N/A -218 0
UNTest N/A N/A +1127 0

Bugs reported

Baseline checker Graspan analysis

Graspan
Evaluation

Results

Program Initial Graph Size Final Graph Size Preprocessing Time Computation Time #Rounds #Rounds with
Repartitioning#Edges #Edges

Linux 208.9M 1.5B 192 sec 4.1 hrs 563 21
PostgreSQL 177.3M 1.1B 127 secs 3.8 hrs 1,025 73

Apache httpd 4.5M 155M 4 secs 3.2 hrs 24,443 102

Program Initial Graph Size Final Graph Size Preprocessing Time Computation Time #Rounds #Rounds with
Repartitioning#Edges #Edges

Linux 49.5M 170.4M 178 secs 5.2 hrs 515 21
PostgreSQL 219.8M 344.1M 131 secs 2.5hrs 245 3

Apache httpd 4.8M 7.2M 5 secs 4 mins 29 0

Graspan performance for pointer analysis

Graspan performance for dataflow analysis

Interprocedural Static
Analysis

Uses calling relationships among procedures.

Enables to obtain more precise analysis information.

Dataflow Analysis – helps in finding transitive flow info.

Pointer Analysis – helps in finding aliases.

Interprocedural Static
Analysis

int * function1() {

 int * ptr1;
 if (<a condition>) {
 ptr1 = fn_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
return ptr1;
}

function2() {
 int * ptr2 = function1();

 int c = *ptr2;
}

Interprocedural Static
Analysis

int * function1() {

 int * ptr1;
 if (<a condition>) {
 ptr1 = fn_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
return ptr1;
}

function2() {
 int * ptr2 = function1();

 int c = *ptr2;
}

NEED NULL
CHECK

Interprocedural Static
Analysis

int * function1() {

 int * ptr1;
 if (<a condition>) {
 ptr1 = fn_ret_null();
 }
 else {
 ptr1 = fnA();
 }
 if (ptr1!=NULL) {
 int b = *ptr1;
 }
return ptr1;
}

function2() {
 int * ptr2 = function1();

 int c = *ptr2;
}

Interprocedural Static
Analysis

Uses calling relationships among procedures.

Enables to obtain more precise analysis information.

Dataflow Analysis – helps in finding transitive flow info.

Pointer Analysis – helps in finding aliases.

1 Dataflow Analysis Lecture: Christoph Reinbach, SEPL, Nov 2014

Dataflow Analysis

Transfer functions

A pointer analysis computes, for each pointer variable,
a set of heap objects that can flow to the variable.

x = new A();

Allocates memory in the heap space.
This is an allocation site.

For each allocation site, we create an abstract location
in the heap, where we assume the object will be
created.

o

Due to the assignment,
“x points to o” and hence o belongs to points-to set of x, pt(x)

Pointer Analysis

A pointer analysis computes, for each pointer variable,
a set of heap objects that can flow to the variable.

1 Pointer Analysis, Smaragdakis, Balatsouras, Foundatiaons and Trends in Programming Languages, 2015

x y z

x and y may alias

Pointer Analysis

Pointer Analysis

Different properties

Flow Sensitivity

Field Sensitivity

Context Sensitivity

Radu Rugina, Lecture Slides 2005

Pointer Analysis

Different properties

Flow Sensitivity

Field Sensitivity

Context Sensitivity

struct {
 int f1;
 int f2;
} x, y;

x.f1x.f2
y.f1y.f2

x.* y.* *.f1*.f2

Field sensitive Field insensitive Field based

Pointer Analysis

Different properties

Flow Sensitivity

Field Sensitivity

Context Sensitivity

Most significant
According to study by
Hind, Pointer Analysis: Haven't We Solved This Problem Yet?
PASTE 2001

Pointer Analysis

Different properties

Flow Sensitivity

Field Sensitivity

Context Sensitivity
Distinguishes calling contexts.

sum (a,b)
{
 return a + b;
}

Adapted from Radu Rugina, CS711

i: x=sum(10,1) j: y=sum(2,2)

(11, 4) (11, 4)

Pointer Analysis

Context Insensitive Pointer Analysis Context Sensitive Pointer Analysis

* Bjarne Steensgaard. Points-to Analysis in Almost Linear Time.
POPL’96

* L. Anderson. Program analysis and specialization for the C
programming language. University of Copenhagen. May 1994

* Sridharan and Bodík
Refinement-based context-sensitive points-to analysis for
Java. (PLDI 2006)

* Whaley and Lam
Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. (PLDI 2000)

* Yan, Xu and Rountev
Demand-driven context-sensitive alias analysis for Java
(ISSTA 2011)

* Zheng and Rugina
Demand-driven alias analysis for C (POPL 2008)* Manuvir Das. 2000. Unification-based pointer analysis with

directional assignments. In Proceedings of the ACM SIGPLAN
2000 conference on Programming language design and
implementation (PLDI '00).

* Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie Hendren, and
Navindra Umanee. 2003. Points-to analysis using
BDDs. SIGPLAN Not. 38, 5 (May 2003), 103-114.

* Robert P. Wilson and Monica S. Lam. 1995. Efficient
context-sensitive pointer analysis for C programs.
In Proceedings of the ACM SIGPLAN (PLDI conference on
'95).

* Samuel Z. Guyer and Calvin Lin. 2003. Client-driven pointer
analysis. Radhia Cousot (Ed.). Springer-Verlag, Berlin,
Heidelberg, 214-236.

Context Insensitive Pointer Analysis
Bjarne Steensgaard
Points-to Analysis in Almost Linear Time. POPL` 96

1 a = &b
2 b = &c
3 d = &e
4 a = &d

a
b

d

1

4

2

3

c

e

a
b

d

c

e

a
b

d

c

e

PointsTo(a)=(b,d),
PointsTo(b,d)=(c,e)

* Unification Based pointer analysis algorithm, that generates points-to sets of
variables in a program.

PointsTo(p) = PointsTo(q)

p = q

Context Insensitive Pointer Analysis
Bjarne Steensgaard
Points-to Analysis in Almost Linear Time. POPL` 96

1 a = &b
2 b = &c
3 d = &e
4 a = &d

a
b

d

1

4

2

3

c

e

a
b

d

c

e

a
b

d

c

e

* Unification Based pointer analysis algorithm, that generates points-to sets of
variables in a program.

PointsTo(p) = PointsTo(q)

p = q

* Reduces the size of the points-to graph, efficient.
* Imprecise

Context Insensitive Pointer Analysis
L. Anderson.
Program analysis and specialization for the C programming language. University of Copenhagen. May
1994

* Inclusion Based pointer analysis algorithm, that generates points-to sets of
variables in a program.

PointsTo(q) ⊆ PointsTo(p)

p = q

* Points-to graph is larger, and it takes longer to finish.

* More precise than Steensgard.

⊆
⊆

⊆

a

c

b

d

e

1 a = &b
2 b = &c
3 d = &e
4 a = &d

⊆
⊆

⊆

Context Sensitive Pointer Analysis

sum (a,b)
{
 return a + b;
}

Fn1()
{
x=sum(10,1);
}

Fn2()
{
j: y=sum(2,2)
}

sum (a,b)
{
 return a + b;
}

Fn1()
{
x=sum(10,1);
}

Fn2()
{
j: y=sum(2,2)
}

sum (a,b)
{
 return a + b;
}

Cloning

* Whaley and Lam
Cloning-based context-sensitive pointer alias analysis using binary decision diagrams. (PLDI 2000)

sum (a,b)
{
 return a + b;
}

Fn1()
{
x=sum(10,1);
}

Fn2()
{
j: y=sum(2,2)
}

Entry_1

Exit_1 Entry_2

Entry_2

Entry_1, Exit_1

Label matching

Entry_1, Exit_2
Entry_2, Exit_1
Entry_2, Exit_2

* Sridharan and Bodík
Refinement-based context-sensitive points-to analysis for Java. (PLDI 2006)
* Yan, Xu and Rountev
Demand-driven context-sensitive alias analysis for Java (ISSTA 2011)
* Zheng and Rugina
Demand-driven alias analysis for C (POPL 2008)

Exponential Contexts!

#calling

contexts

prog. size

Demand Driven

Zheng and Rugina
Demand-driven alias analysis for C (POPL 2008)

Answers alias queries

They accurately answered 96% of their queries in
0.5s

Used the SPEC Benchmark 2000

The largest graph they
analyzed had 800,000 edges.

Client Driven

Sridharan and Bodík
Refinement-based context-sensitive points-to analysis

for Java. (PLDI 2006)

Budget

Provide a conservative,
heuristic based answer

upon termination

