
Hiding Data within an
Image using

Steganography
Shreyoshi Chatterjee, Aftab Hussain, Goutam

Majumder, Ratul Paul, Dattatreya Raychowdhuri

Abstract— this project deals with the concept of
Steganography. Steganography is the process of sending messages
in a concealed manner in a particular medium. Here we intend to
send messages from a sender to a receiver via image files. The
message is encrypted in the image file in such a way that no one
could detect any changes in the resulting image by the naked eye.
It is then sent to the receiver. The message can only be decrypted
by the intended receiver and no one else, because it will be
password protected, which will only be known to the classified
sender and receiver.

Index Terms— Cover medium image, stego medium image,
stego key

I. INTRODUCTION

In this paper we discuss our project entitled “Hiding Data
within an Image using Steganography”. The objective of our
project was to build a software that could hide data in an
encrypted manner in an image file and decode the data back as
and when required, in an efficient manner. The software uses
the principles of Steganography.

According to Wikipedia [3], “Steganography is the art and
science of writing hidden messages in such a way that no-one,
apart from the sender and intended recipient, suspects the
existence of the message, a form of security through
obscurity.” The word “steganography” is derived from the
Greek words steganos, which means “covered,” and graphia,
which means “writing.” The word Steganography was first
used in Johannes Trithemius’s Steganographia, a treatise on
cryptography and Steganography in 1499. In practice, it
involves encryption of messages in a certain medium (such as
a document, image, sound, or movie file) in such a manner
that the existence of the message in the medium is obscured.

The software uses the following basic formula:
cover medium + hidden data + stego key = stego medium

‘cover medium’ denotes the Image file in which the data will
be hidden. ‘Hidden data’ denotes the data which is to be
hidden. ‘stego key’ denotes the password that is used to
encrypt the ‘hidden data’. ‘stego medium’ is the final image
that is generated after the Steganographic encryption process.

The manner in which our project gains an advantage in the
maintenance of confidentiality may be illustrated as follows.
Let’s say Alan sends a message to Graham, and it is to be such
that only the two of them are to know about the contents of the
message. In that case, Alan will encrypt the message, using
any cryptographic algorithm and send it to Graham as a
scrambled text message via a communication path. Now if an

eavesdropper, Ryan, intercepts the message, he’ll find the
encrypted message. Even though all Ryan gets is a scrambled
message, it would prompt Ryan that the message contains
something confidential. Ryan would hence try to break the
algorithm used, as hackers do, and decrypt the message.

This problem is not faced while using our software to
transmit messages as it avoids any sort of suspicion. Our
software encrypts the message in an image file, which could
then be transferred. Hence, if Alan were to use our method, he
would encrypt his message in an image file and transmit it to
Graham, easily avoiding any suspicion that the image contains
a message.

The method applied is simple. Any image consists of a large
number of pixels, each of which consists of a certain number
of bytes. The bytes of each pixel are represented by a
numerical value, which corresponds to a particular color.
These bytes could be manipulated to carry data. However,
changing these bytes can cause changes to the overall
appearance of the image, which may evoke suspicion that the
image contains some data. To circumvent this issue, data is
stored in the least significant bytes of each pixel of the image.
This causes a slight modification to the color of the pixels,
which is, however, unnoticeable to the human eye. As a result
what we get is an image, with the encrypted data, visually
identical to the original image, making it a lot safer for
transmission via a communication path; attackers do not
notice anything odd about the image being passed. This is a
very popular Steganographic technique, which has been used
in several Steganographic tools and applications. The
technique is known as LSB embedding. This technique has
also been implemented in our software.

It may however be put to notice that even this strategy has
been countered by attackers. An aggressive attacker could
analyze the LSB of each pixel of an image and may,
eventually, bring together the message. Steganalysis is the
method used by hackers to counter the techniques of
Steganography. Steganalysis is the art and science of detecting
messages hidden using steganography; this is analogous to
cryptanalysis [17] applied to cryptography [18]. The goal of
steganalysis [4] is to identify suspected packages, determine
whether or not they have a payload encoded into them, and, if
possible, recover that payload. So with image files, hackers
are most likely to analyze the LSBs of each of the pixels, and
attempt to deduce any anomaly. If they do trace any aberrance,
they would be prompted with the idea that the image contains
confidential data, which would encourage them to proceed
with their decrypting techniques.

This is where our software algorithm strives for
complicating matters for the hacker. Instead of using the
general LSB encoding technique, we have used a modified
version of it. Here, instead of using the very last LSB, we have
made use of the last 2 LSBs. We have implemented an
alternating sequence of encryption where once the very last
LSB of a pixel is altered, and then the 2nd last LSB of the next
pixel is altered, and so on. This makes the encryption process
less obvious and a lot less prone to attacks as compared to the
general Steganographic LSB embedding technique.

http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Cryptanalysis


In Section II we elaborate on the wide range of
implementations of Steganography and on software tools
which implement Steganographic techniques. Later on in
Section III, the algorithm which we implemented in our
software is explained. In Section IV we display and discuss
the outputs of our application and also give an assessment of
our project. Finally Section V gives the conclusion of the
project.

II. IMPLEMENTATIONS OF STEGANOGRAPHY AND RELATED

SOFTWARE TOOLS USED

Steganographic techniques have a wide range of applications
in different fields as enlisted below:

Usage in modern printers. Steganography is implemented by
many modern colour printers, such as those of HP and Xerox,
which print small yellow dots or characters. These dots and
characters generally denote the timestamp or a serial code and
are printed in such a manner that makes it difficult to notice
them by the naked eye. However, they can be noticed through
a magnifying glass or blue light. Printer companies first used
this technology during the 1990s mainly to ensure
governments that their machines were not being used for
forgery.

Usage in mobile telephony. Due to the rising needs of data
security and hidden communications in mobile telephony,
steganography has found significant use in WAP, or Wireless
Application Protocol [8]. Here steganography has been
implemented in WML by means of encoding information in
the ID attribute of the WML document tags. (Wireless Markup
Language is a language used for creating web pages for the
WAP.) The decoder program is written in J2ME (Java 2 Micro
Edition).

Usage in digital watermarking. Digital watermarking [1,5] is
the process of embedding information in digital media, which
can be visible or invisible. Visible watermarking can be used
on digital media to represent the ownership of the media.
Invisible watermarking is generally used for copyright
protection of digital media. Steganography finds application in
invisible watermarking where it may be necessary to
communicate secret messages embedded in digital signals.

Usage in crime. The advantages of steganography
technologies have also facilitated various malicious activities.
Hackers use steganography along with the “chaffing and
winnowing” technique to embed malicious code in emails
(junk mails and spams) and various other digital media to
retrieve confidential information of users connected to a
network. Malicious actors communicate and pass secret
information through digital media, which are very difficult to
detect, thus posing a serious threat to security. Various

decoding software have been built to counter such practices.

Usage in Access control system for digital content
distribution. With the advent of digital content distribution &
e-commerce over the Internet, the issue of access rights has
become very important. As a result, many access control
systems, which utilize steganographic techniques, have been
designed where digital content is embedded by a
steganographic technique in folder-by-folder manner and
where each folder has a unique access key. The entire
embedded content is then uploaded on a web page where the
contents are publicized. Any customer who would wish to
access the content would then have to request for the access
key.

Usage in Media Database Systems. Steganography is used for
non-security related purposes as well. In media database
systems, problems may arise when there is a requirement to
store additional information, annotations, or metadata (data
about data) of the contents of the database along with the
contents themselves in a unified manner. Examples of such
metadata include photographer’s name, date, etc for a photos
database system. Common digital album software does
facilitate the storage of such information, but fails to bind this
additional information with the corresponding digital data. As
a result, when the digital databases are transferred from one
machine to another, the additional information is lost. This
problem is tackled by steganography, which unifies the two
types of data by an embedding operation.

Various software that make use of Steganographic techniques
include:

S-Tools: S-Tools is a steganography tool that hides files in
BMP, GIF, and WAV files. This is a powerful and versatile
tool as it allows multiple files to be hidden in a single audio or
image file. It is a Windows based application.

StegoDos: Also known as the Black Wolfs Picture Encoder
version 0.90a. It works only for 320* 200 images with 256
colors

Camouflage: Allows hiding files by scrambling them and then
attaching them to the file of your choice. It has found use
especially in emailing where senders can send attachments
without revealing the existence of the attachments.

Mp3 Stego: Hides information using Steganography in MP3
files during the compression process.



III. ALGORITHMS USED

While designing our application, we have kept in mind our
primary goal, which is to maintain the identicalness of the
original image and the image, which bears the message.

Our algorithm falls under private key or symmetric key
cryptography where a shared key is used for both encryption
and decryption. The key is to be shared between the sender
and the receiver. In our design, in order to decrypt a message
from a particular image, one must have our application as well
as the shared key.

A. ENCRYPTION ALGORITHM

Step.1: Store the path of the textfile, which contains the
message to be encrypted.

Step.2: Read and store contents of the textfile in ASCII
format in a string variable, ascmsg. (Putting an ‘A’ after the
ASCII code of each character; for example, the message “abc”
would be stored in a string as, “97A98A99A”.

Step.3: Take the password as input and store it in another
string variable, ascpwd in ASCII format.

Step.4: Store a new string variable, ascContent, such that it
contains ascpwd+length of ascmsg + ‘F’ + ascmsg
(concatenated)

Step.5: Load the image, on which the message is supposed to
be encrypted, in the buffer.

Step.6: Put the 1st character of ascContent in the 6th double
byte of the first pixel (top left) of the loaded image.

Step.7: Put the next character of ascContent in the 5th double
byte of the next pixel (in the same row) of the loaded image.
Move to the next row if the end of row is reached.

Step.8: Put the next character of ascContent in the 6th double
byte of the next pixel of the loaded image. Move to the next
row if the end of the row is reached.

Step.9: Repeat steps 7 and 8 until all characters of
ascContent have been encrypted in the image.

Step.10: Save the modified image from the buffer in a location
specified by the user. (This is the Stego Medium image).

B. DECRYPTION ALGORITHM

Step.1: Load the Stego Medium image (which contains the
encrypted message) in the buffer.

Step.2: Take password as input and store it in string variable,
ascpwd, in ASCII format.

Step.3: Extract the 6th double byte code of the 1st pixel of
the loaded image. Compare it with the 1st character of
ascpwd. If they do not match, print “incorrect password” and
exit algorithm.

Step.4: Extract the 5th double byte code of the next pixel of
the loaded image. Compare it with the next character of
ascpwd. If they do not match, print “incorrect password” and
exit algorithm”. Set Flag=1.

Step.5: Extract the 6th double byte code of the next pixel of
the loaded image. Compare it with the next character of
ascpwd. If they do not match, print “incorrect password” and
exit algorithm”. Set Flag=0.

Step.6: Repeat steps 4 and 5 until the last character of
ascpwd is compared.

Step.7: If Flag=1, extract the 6th double byte code of the next
pixel of the loaded image. Concatenate it with string variable
msglen. Set Flag=0.

Step.8: If Flag=0, extract the 5th double byte code of the next
pixel of the loaded image. Concatenate it with msglen. Set
Flag=1.

Step.9: Repeat steps 7 and 8 while at any point the extracted
code is not equal to “F”.

Step.10: Set a counter c=0.

Step.11: If Flag=1, extract the 6th double byte code of the
next pixel of the loaded image. Concatenate it with string
variable msgcode. Set Flag=0. Increment counter c.

Step.12: If Flag=0, extract the 5th double byte code of the next
pixel of the loaded image. Concatenate it with string variable
msgcode. Set Flag=1. Increment counter c.

Step.13: Repeat steps 11 and 12 until c= msglen.

Step.14: Convert the msgcode to standard characters and save
the result in string variable msg.

Step.15: Print msg.



IV. DISCUSSION

A. Verification and Validation

Here we show the operation of our application and test it by
checking whether the key (password) actually works or not.

Encrypting the message in an image file:

We put the following message in a text file by the name of
docu.txt, “This is a secret message”. Next we encrypt this text
inside an image file—123.png with a password. The new
image with the message encrypted is generated and we name
this image file 123new.png.

Figure 1: Original Image – cover medium image (123.png)

Figure 2: Image with hidden data- Stego medium image (123new.png)

Decrypting the message from the newly generated image:

In our application, we enter the path of the new image
(123new.png). Then we enter the password that had been used

to encrypt the message. A successful match of the password
would return the hidden text message on the command
prompt.

Figure 3: Snapshot of the working of our application

As can be seen the images, the cover medium image and the
stego medium image (Figure 1 and Figure 2 respectively) are
visually identical and hence successfully avoid any suspicion
from potential attackers.

Now we try to use this application to retrieve the message
from the same image (123new.png) by deliberately using an
incorrect password. The result is displayed in the snapshot
below.

Figure 4: Application rejects an incorrect password

Our application successfully rejects the password and denies
retrieval of the encrypted message. Hence it becomes vital in
the whole process to protect the password from any person
who’s not supposed to know about the message being passed.



Figure 5: Original Image (Zoomed)

Figure 6: Image with hidden data (Zoomed)

B. Project Assessment and Future Developments

The project application has been built using Java and hence
carries along with it all the advantageous features of Java such
as platform independence and security. Besides, the
application also has a very short runtime. This is due to the
fact that the Java compiler first compiles the program code
into bytecode (an optimized set of instructions designed to be
executed by the Java run-time system), which is then executed
by the java run-time system (the Java Virtual Machine) with
the help of the Just in Time Compiler [2]. The Just in Time
compiler only compiles a selected portion of the code on a
demand-basis instead of compiling the entire code
unnecessarily. This saves a lot of time in program execution.

The program algorithm also contributes to the minimization
of program runtime. As mentioned earlier, our program
algorithm uses a symmetric key algorithm, which is much less
computationally complex as compared to asymmetric key
algorithms. Typically, symmetric key algorithms are hundreds
to thousands times faster than asymmetric key algorithms.
However, an issue of key management arises in using a
symmetric key algorithm. Here, the security of the message is
based on one shared key. Hence distribution of the shared key
becomes a serious issue, especially if the content of the
message is to be shared by a large number of users. To
overcome this problem a hybrid cryptosystem, such as pretty
good privacy (PGP), could be implemented in a future version
of the application. Hybrid cryptosystems combine symmetric
and asymmetric key algorithms and hence carry the
advantages of both the encryption systems.

At the moment, our application only works with PNG image
files. Hence, the functionality of our project could be
improved by enabling it to work with more popular image
files such as JPG.

V. CONCLUSION
Steganography is a widely studied and highly researched

field today as it bears significant importance in many key
areas, such as digital forensics, network security, copyright
protection schemes, crime, etc. This paper illustrates a
software project which utilizes a Steganographic technique to
encrypt data into image files, without deteriorating the image
with respect to its view at plain sight, and consequently also
decodes the data successfully on entering the correct key.



VI. REFERENCES

1. Multimedia security - Steganography and digital Watermarking
techniques for protection of intellectual property by Chun Shien Lu
Encryption Threat

2. The Complete Reference – Java by Herbert Schildt Seventh
Edition

3. “Steganography”
URL: http://en.wikipedia.org/wiki/Steganography (accessed on
07.01.2009)

4. “Steganalysis”
URL: http://en.wikipedia.org/wiki/Steganalysis (accessed on
07.01.2009)

5. “Digital Watermarking”
URL: http://en.wikipedia.org/wiki/Digital_watermarking (accessed
on 07.01.2009)

6. “Steganography”
URL: http://www.jjtc.com/Steganography/ (accessed on
07.01.2009)

7. “Printer Steganography”
URL: http://en.wikipedia.org/wiki/Printer_steganography
(accessed on 09.01.2009)

8. “Steganography in wireless application protocol”
URL: http://portal.acm.org/citation.cfm?id=1169183 (accessed on
09.01.2009)

9. “Learning Java 2D”
URL:
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2d
part1.html (accessed on 15.01.2009)
and
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2d
part2.html (accessed on 15.01.2009)

10. “SampleModel Class”
URL:http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/Sampl
eModel.html (accessed on 20.01.2009)

11. “BufferedImage Class”
URL:http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/Buffer
edImage.html (accessed on 20.01.2009)

12. “Applications of Steganography”
URL: www.datahide.com/BPCSe/applications-e.html (accessed on
09.02.2009)

13. “Writing/Saving an Image”
URL:http://java.sun.com/docs/books/tutorial/2d/images/saveimage.
html (accessed on 11.02.2009)

14. Digital Watermarking and Steganography 2nd Edition by Morgan
Kaufmann

15. Data Communications and Networking 4th Edition by Behrouz A
Forouzan

16. Armin Bahramshahry, Hesam Ghasemi, Anish Mitra, and Vinayak
Morada, “Design of a Data Hiding Application Using
Steganography” April 2007

17. “Cryptanalysis” http://en.wikipedia.org/wiki/Cryptanalysis
18. “Cryptography” http://en.wikipedia.org/wiki/Cryptanalysis

http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Steganalysis
http://en.wikipedia.org/wiki/Digital_watermarking
http://www.jjtc.com/Steganography/
http://en.wikipedia.org/wiki/Printer_steganography
http://www.jjtc.com/Steganography/
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart1.html
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart1.html
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart2.html
http://java.sun.com/developer/technicalArticles/GUI/java2d/java2dpart2.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/SampleModel.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/SampleModel.html
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/BufferedImage.html
http://www.datahide.com/BPCSe/applications-e.html
http://java.sun.com/docs/books/tutorial/2d/images/saveimage.html
http://java.sun.com/docs/books/tutorial/2d/images/saveimage.html
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Cryptanalysis

