


ABSTRACT

Monitoring network performance parameters
like throughput, delay, and overhead help us to judge
the quality of transport layer protocols. In this work,
we experimentally measure these parameters in
order to evaluate the performance of SCTP (Stream
Control Transmission Protocol), a protocol widely
renowned for its multihoming and multistreaming
features. To give credence to our experiment, we
simulated the protocol under different topologies and
compared the corresponding parameter readings.

Keywords— throughput, delay, overhead

1. INTRODUCTION

SCTP is a reliable, message-oriented transport
layer protocol, that was first introduced by Stewart, et
al. in RFC 2960[1], which was later obsoleted in RFC
4960[2], the present standard document of the
protocol. Services like process-to-process
communication, multistreaming and multihoming
provided by SCTP make the protocol suitable for
real-time applications. To name a few they include,
IUA (ISDN over IP), M2UA and M3UA (telephone
signaling), H.248 (media gateway control), H.323 (IP
telephony), and SIP [3]. In addition to that SCTP
retains the congestion, error and flow control
mechanisms of TCP (In particular, SCTP follows
TCP-SACK for these mechanisms) and thus carries
all the advantages of TCP. Another key facility
provided by SCTP, which was not present in the TCP
variants, is the prevention of SYN-flooding attacks
(or Denial of Service Attacks). SCTP's four-way
handshake mechanism helps it to achieve this. The
HOL (Head-of-line) blocking problem is also averted
in SCTP by virtue of its multistreaming facility.

A lot of research work has been carried out in
the field of SCTP, especially to study & compare its
performances with other protocols, under different
types of networks.

Olga Antonova [4] compared SCTP with TCP-
MH and DCCP with regard to applications in the
mobile network. SCTP was found to be the strongest
among the 3 with respect to its multihoming and
mobility features, however more investigation is
necessary.

Sourabh Ladha and Paul D. Amer in [5],
demonstrated how the latency in multiple file
transfers can be reduced in FTP with the help of
SCTP's multistreaming capability. They also found
some key benefits of using FTP over SCTP instead of
over TCP: with SCTP, they saw that less packets
were transferred in FTP, hence reducing network
overload. Also the number of connections a server
must maintain is reduced.

In [6], the performance of SCTP was observed
in the presence of network redundancy; here in the
presence of background traffic, the throughput and
end to end delay of SCTP were measured. Network
overhead, however, was not measured.

In the following section (Section 2) of the
report, we give details of the different features of
SCTP and focus on how they are facilitated. In
Section 3, we give details of the design of our
experiment. In Section 4, we discuss the results we
obtained. We conclude our report in Section 5.

2. FEATURES OF SCTP

2.1. Multihoming:-

1

An Experimental Study on the Network
Performance of SCTP

Aftab Hussain1, Khalid Mahmood2, Saif-ul-Islam Khan3, Syed Muzakkir Ahmed4

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

hussain_aftab@hotmail.com1, klmahmood@gmail.com2, saif009972@gmail.com3,
syed.muzakkir@gmail.com4

Multihoming is the ability for a single endpoint to
support multiple IP addresses. Therefore, a multi-
homed host can be reached by either address. A TCP
connection involves one source and one destination
IP address. An SCTP association (equivalent to a
connection in TCP) supports multihoming service.
Thus there are multiple paths for multi-homed hosts
to communicate with each other. This approach
makes the communication more fault-tolerant. An
association between multihomed hosts is made by the
exchange of INIT chunks, exchanging information
about the available IP addresses to each host, and a
primary path is chosen for communication.
HEARTBEAT chunks are sent over all paths for
monitoring purposes. These chunks are
acknowledged by HEARTBEATACK chunks.
Consequently counters are maintained for each path
that depends on departure and arrival of these 2
control chunks respectively. Based on the
implementation criteria, paths are marked
unreachable according to the value of these counters.
Details of the counter management could be found in
[2]. Path handovers are made if any path is found to
be not responding.

2.2. Multistreaming:-

SCTP allows multistream service in each
connection. Multistreaming within an SCTP
association separates flows of logically different data
into independent streams. Thus, if one of the streams
is blocked, the other streams can still deliver their
data. This prevents the head-of-line blocking
problem.

Figure 2.1: SCTP multi-streaming

In Figure 2.1, Hosts A and B have a multistreamed
association. Three streams go from A to B, and one
stream goes from B to A. Each stream pertains to a
certain type of data (audio, video, and text). The
number of streams in each direction is negotiated
during SCTP’s association establishment phase.
SCTP uses a set of parameters to distinguish between
the stream chunks. Each chunk has the following
parameters in its SCTP header,

Transmission Sequence Number (TSN) – used for
reliable transmission. The TSN is global over all
streams. It uniquely identifies each chunk in the
entire association. Reliable delivery is ensured by the
help of TSNs. Also, SCTP’s congestion control
mechanism uses these TSNs.

Stream Identifier (SID) – This parameter tells the
sequence number of the stream to which a chunk
belongs.

Stream Sequence Number (SSN) – indicates the
sequence of a chunk within a particular stream.
Ordered delivery is provided with the help of SSN
numbers.

2.3. DoS attack prevention:-

A malicious attacker can flood a server with a
huge number of fake SYN packets. Each time the
server receives a SYN packet it sets up a state table
and allocates resources while waiting for the next
packet to arrive. After a while the server may
collapse due to exhaustion of resources. This is
known as the SYN flooding attack, or the denial of
service (DoS) attack [3].

SCTP has a four-way handshake for connection
establishment that helps it prevent the DoS attack.
First, the client sends an INIT chunk to the server,
which consequently replies with an INIT-ACK chunk
containing a COOKIE chunk. (Unlike the scenario in
TCP where resources are reserved for the client on
receiving the request, and then an ACK is sent back.)
This chunk contains a Message Authentication Code
(MAC), the cookie generation time, and the cookie
expiration time. On receiving the cookie chunk, the
client sends back a copy of COOKIE in a COOKIE-
ECHO chunk. The server calculates the new MAC
based on information from this COOKIE-ECHO
chunk and compares it with MAC that it sent to the
client. If there is a match, resources are allocated and
the server acknowledges with a COOKIE-ACK
chunk. This is the key step that prevents any possible
DoS attack, as the client is verified in this step.

3. EXPERIMENTAL SETUP

In this section we outline the various aspects of
our experiment.

3.1. Software used:-

2

The latest version of Network Simulator
available, (Ns-allinone version 2.34) [7], was used to
conduct the experiments in this work. This version of
Network Simulator contains the SCTP module
(release 2.34) which supports key SCTP features.
Details of this module can be found in [8]. The
application was installed in Ubuntu 10.04, an
operating system based on the Debian GNU/Linux
platform. For plotting the graphs we used Gnuplot
version 4.4.3, a portable command-line driven
graphing utility for Linux.

3.2. Network topologies used:-

We ran our simulations for SCTP on 3 different
network topologies to measure throughput, delay and
overhead. For all cases FTP was used in the
application layer.

Our first topology, topology 1 (Fig. 3.1),
comprises of 2 nodes, sending messages to each
other. Our simulation time for this topology was 30s.

The 2nd topology, topology 2 (Fig. 3.2),
comprises of a slightly more complicated scenario.
Here we demonstrate Concurrent Multipath Transfer
(CMT). The topology consists of 2 hosts. Each host
has 2 interfaces. There exist direct connections
between each pair of interfaces (one from each host).
Data is transferred using both paths concurrently. Our
simulation time for this topology was 10s.

The 3rd topology, topology 3 (Fig. 3.3),
demonstrates multihoming. Two endpoints with 2
interfaces each are connected via a router. The sender
has a HEARTBEAT timer for each destination. In the
middle of the association (7.5s) a path handover is
carried out. Our simulation time for this topology was
12s.
3.3. The parameters measured:-

Throughput. Throughput is a measure of how fast
we can send data through a network [3]. In our
simulations, we calculated the throughput, in kB/s, as
follows,

Throughput=total number of bytes received(kB)/total
simulation time(s)

Delay. Delay or latency defines how long it takes for
an entire message to completely arrive at the
destination from the time the first bit is sent out from

the source [3]. We calculated the average delays of
the data chunks that were sent, in milliseconds, as
follows,

Average delay=Total delays for sending all data
chunks(ms)/Total number of data chunks sent

Overhead. The overhead for transport layer
protocols is the number of additional (control
packets) that are being sent in order to transmit a
certain number of data packets. We calculate
overhead as follows,

Overhead=total no. of control packets sent/total
no. of data packets sent * 100 %

Figure 3.1: Topology 1

Figure 3.2: Topology 2

3

Figure 3.3: Topology 3

3.4. Work methodology:-

We created separate tcl scripts to implement
the 3 topologies, codes of which are given in the
Appendix. The tcl scripts use features provided in the
SCTP module. We used 3 different awk scripts to
generate throughput, delay, and overhead
respectively for each of the topologies. Codes of the
awk scripts have also been given in the Appendix.

After executing the .tcl files in Network
Simulator traces are generated. The .awk scripts
analyze the traces and generate the required data. The
average throughput, average delay, and overhead are
shown in the terminal window when each of the awk
scripts is executed. Simultaneously, data sheets for
each of the metrics are also generated in the form of
plain text files. The outputs thus generated are
represented in Gnuplot as graphs which give
instantaneous readings for each of the metrics.

Fig.3.4 depicts the information flow, at the
implementation level, during our experiment.

Figure 3.4: Information flow diagram in the experiment

4. RESULTS

4.1. Performance metrics graphs:-

Topology 1:

Figure 4.1: Throughput (kB/s) vs. Time(s) for Topology 1

Figure 4.2: Delay (ms) vs. Time (s) for Topology 1

4

Figure 4.3: Overhead vs. No. of packets sent for Topology1

Table 4.1: Performance metrics for SCTP over
Topology 1
Simulation
Time (s)

Average
Throughput(kB/s)

Average
Delay(ms)

Over-
head(%)

30 45.71 323.68 99.68

Topology 2:

Figure 4.4: Throughput (kB/s) vs. Time(s) for Topology 2

Figure 4.5: Delay (ms) vs. Time (s) for Topology 2

Figure 4.6: Overhead vs. No. of packets sent for Topology 2

Table 4.2: Performance metrics for SCTP over
Topology 2
Simulation
Time (s)

Average
Throughput(kB/s)

Average
Delay(ms)

Over-
head (%)

30 636.31 46.2 50.07

Topology 3:

Figure 4.7: Throughput (kB/s) vs. Time(s) for Topology 3

Figure 4.8: Delay (ms) vs. Time (s) for Topology 3

5

Figure 4.9: Overhead vs. No. of packets sent for Topology 3

Table 4.3: Performance metrics for SCTP over
Topology 3
Simulation
Time (s)

Average
Throughput(kB/s)

Average
Delay(ms)

Overhead
(%)

12 18.29 335.24 59.60

4.2. Discussion:-

Throughput. In all the topologies, SCTP slowly
starts by sending control chunks for establishment of
the association. As indicated by the trace files, these
include initiation chunks and heart-beat chunks
(control chunks for monitoring paths.) Once the
association is established, SCTP's throughput
increases until it reaches the full capacity. This was
reflected in all the throughput graphs (Figs. 4.1, 4.4,
4.7).

Delay. As for the delay metric, once the association
is established, it follows the delay for the link set in
the corresponding .tcl files. Therefore, no extra time
was taken for sending any packet. This was the
output observed for all the topologies.

Overhead. During the initial phase of transmission
we found the overhead to be very high in all the 3
topologies. This is due to the large number of control
packets that are exchanged during association phase
of SCTP. After the initial phase (the association
establishment phase) the overhead steadies down to a
constant value. However, we found the overall
overhead of SCTP to be very high, over topology 1
than what it is over the other topologies. This is due
to the fact that the delayed acknowledgement
mechanism was not used in topology 1, as per the
implementation in sctp1.tcl (set useDelayedSacks_
$false). Hence an acknowledgement for every data
packet received was sent, drastically increasing the
overhead of the protocol. The overheads in the other

2 topologies were comparatively much lower
(50.07% and 59.06%) since the delayed
acknowledgement mechanism was used. The reason
why topology 2 gave a better overhead reading than
topology 3 is because the former implemented
concurrent multi-path transfer, and thus more data
chunks could be sent simultaneously. This clearly
indicates a key advantage which SCTP facilitates
with its multihoming feature. Further investigation is
necessary for achieving concurrent multi-path
transfers with SCTP in real-life implementations as
SCTP’s current implementation does not support load
sharing [4].

In topology 3, a path handover was
intentionally implemented at 7.5s of simulation time.
No marked variation was observed in any of the
network parameters at that time. This clearly
indicates that the path handover was smooth and
without irregularities.

5. CONCLUSIONS

In this work we studied SCTP's network
performance by measuring 3 parameters, throughput,
delay, and overhead using Network Simulator 2.34.
Simulations were carried out over three widely
different topologies. In one of the topologies we
observed how the protocol performs with concurrent
multi-path transfers. We also observed the parameters
in a situation where a path handover took place. With
our results we infer that SCTP's delayed SACK
mechanism (a mechanism which it carried forward
from TCP) helps it to maintain acceptable overheads.
We also observed that if concurrent multi-path
transfer is implemented (which is possible due to
SCTP's multihoming facility), the network overhead
could be further improved.

 The assumption in our work was the absence of
any background traffic. With the inclusion of
background traffic it would be possible to analyze the
resilience of SCTP in a more real-life network. Then
it would be interesting to see how the performance
metrics are affected. In addition to that SCTP could
be tested in the presence of traffic, which are running
under a different protocol, such as TCP. That way,
SCTP's friendliness to other protocols could also be
assessed.

6

6. REFERENCES

[1] RFC 2960 - Stream Control Transmission Protocol,
www.ietf.org/rfc/rfc2960.txt

[2] RFC 4960 – Stream Control Transmission Protocol,
tools.ietf.org/html/rfc4960

[3] Behrouz A. Forouzan, Data Communications and
Networking, 4th edition, Tata McGraw Hill, pp. 736-
754

[4] Olga Antonova, Introduction and Comparison of
SCTP, TCP-MH, DCCP protocols, University of
Helsinki, 2004, www.tml.tkk.fi/Studies/T-
110.551/2004/papers/Antonova.pdf

[5] Sourabh Ladha, Paul D. Amer, Improving Multiple File
Transfers Using SCTP Multistreaming, Conference
on Performance, Computing, and
Communications, IEEE International, pp.513 –
522, 2004

[6] Rashid Ali, Performance of Network Redundancy in
SCTP - Introducing effect of different factors on Multi-
homing, Master’s Thesis, University West, Department
of Economics and IT, Sweden, 2010

[7] Network Simulator Download page,
www.isi.edu/nsnam/ns/ns-build.html

[8] README file for NS-2 SCTP module release 3.7,
www.cis.udel.edu/~nekiz/sctp.pdf

7

APPENDIX

A. The .tcl files for the 3 different topologies:

sctp1.tcl
Trace set show_sctphdr_ 1

set ns [new Simulator]

set nf [open sctp.nam w]

$ns namtrace-all $nf

set allchan [open all.tr w]

$ns trace-all $allchan

proc finish {} {

 global ns nf allchan trace_ch

 $ns flush-trace

 close $nf

 close $allchan

 close $trace_ch

 exec nam sctp.nam &

 exit 0

}

set false 0
set true 1

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 .5Mb 300ms DropTail

$ns duplex-link-op $n0 $n1 orient right

$ns queue-limit $n0 $n1 93000

set err [new ErrorModel/List]

$err droplist {15}

$ns lossmodel $err $n0 $n1

set sctp0 [new Agent/SCTP]

$ns attach-agent $n0 $sctp0

$sctp0 set fid_ 0

$sctp0 set debugMask_ 0x00303000 # u can
use -1 to turn on everything

$sctp0 set debugFileIndex_ 0

$sctp0 set mtu_ 1500

$sctp0 set dataChunkSize_ 1448

$sctp0 set numOutStreams_ 1

$sctp0 set initialCwndMultiplier_ 2

$sctp0 set useMaxBurst_ $true

set trace_ch [open trace.sctp w]

$sctp0 set trace_all_oneline_ 0 # do not
trace all variables

$sctp0 trace cwnd_

$sctp0 attach $trace_ch

set sctp1 [new Agent/SCTP]

$ns attach-agent $n1 $sctp1

$sctp1 set debugMask_ -1

$sctp1 set debugFileIndex_ 1

$sctp1 set mtu_ 1500

$sctp1 set initialRwnd_ 65536

$sctp1 set useDelayedSacks_ $false

$ns color 0 Red

$ns color 1 Blue

$ns connect $sctp0 $sctp1

set ftp0 [new Application/FTP]

$ftp0 attach-agent $sctp0

8

$ns at 0.5 "$ftp0 start"

$ns at 29.5 "$ftp0 stop"

$ns at 30.0 "finish"

$ns run

sctp2.tcl

Trace set show_sctphdr_ 1

set ns [new Simulator]

set nf [open sctp.nam w]

$ns namtrace-all $nf

set allchan [open all.tr w]

$ns trace-all $allchan

proc finish {} {

 global ns nf allchan

 $ns flush-trace

 close $nf

 close $allchan

 exec nam sctp.nam &

 exit 0

}

set host0_core [$ns node]

set host0_if0 [$ns node]

set host0_if1 [$ns node]

$host0_core color Red

$host0_if0 color Red

$host0_if1 color Red

$ns multihome-add-interface $host0_core
$host0_if0

$ns multihome-add-interface $host0_core
$host0_if1

set host1_core [$ns node]

set host1_if0 [$ns node]

set host1_if1 [$ns node]

$host1_core color Blue

$host1_if0 color Blue

$host1_if1 color Blue

$ns multihome-add-interface $host1_core
$host1_if0

$ns multihome-add-interface $host1_core
$host1_if1

$ns duplex-link $host0_if0 $host1_if0 10Mb
45ms DropTail

[[$ns link $host0_if0 $host1_if0] queue] set
limit_ 50

$ns duplex-link $host0_if1 $host1_if1 10Mb
45ms DropTail

[[$ns link $host0_if1 $host1_if1] queue] set
limit_ 50

set sctp0 [new Agent/SCTP/CMT]

$ns multihome-attach-agent $host0_core
$sctp0

$sctp0 set fid_ 0

$sctp0 set debugMask_ -1

$sctp0 set debugFileIndex_ 0

$sctp0 set mtu_ 1500

$sctp0 set dataChunkSize_ 1468

9

$sctp0 set numOutStreams_ 1

$sctp0 set useCmtReordering_ 1 # turn on
Reordering algo.

$sctp0 set useCmtCwnd_ 1 # turn on
CUC algo.

$sctp0 set useCmtDelAck_ 1 # turn on
DAC algo.

$sctp0 set eCmtRtxPolicy_ 4 # rtx.
policy : RTX_CWND

set trace_ch [open trace.sctp w]

$sctp0 set trace_all_ 1 # trace
them all on one line

$sctp0 trace cwnd_

$sctp0 trace rto_

$sctp0 trace errorCount_

$sctp0 attach $trace_ch

set sctp1 [new Agent/SCTP/CMT]

$ns multihome-attach-agent $host1_core
$sctp1

$sctp1 set debugMask_ -1

$sctp1 set debugFileIndex_ 1

$sctp1 set mtu_ 1500

$sctp1 set initialRwnd_ 65536

$sctp1 set useDelayedSacks_ 1

$sctp1 set useCmtDelAck_ 1

$ns color 0 Red

$ns color 1 Blue

$ns connect $sctp0 $sctp1

set ftp0 [new Application/FTP]

$ftp0 attach-agent $sctp0

set primary before association starts

$sctp0 set-primary-destination $host1_if0

$ns at 0.5 "$ftp0 start"

$ns at 10.0 "finish"

$ns run

sctp3.tcl

Trace set show_sctphdr_ 1

set ns [new Simulator]

set nf [open sctp.nam w]

$ns namtrace-all $nf

set allchan [open all.tr w]

$ns trace-all $allchan

proc finish {} {

 global ns nf allchan

 $ns flush-trace

 close $nf

 close $allchan

 exec nam sctp.nam &

 exit 0

}

set host0_core [$ns node]

set host0_if0 [$ns node]

set host0_if1 [$ns node]

$host0_core color Red

10

$host0_if0 color Red

$host0_if1 color Red

$ns multihome-add-interface $host0_core
$host0_if0

$ns multihome-add-interface $host0_core
$host0_if1

set host1_core [$ns node]

set host1_if0 [$ns node]

set host1_if1 [$ns node]

$host1_core color Blue

$host1_if0 color Blue

$host1_if1 color Blue

$ns multihome-add-interface $host1_core
$host1_if0

$ns multihome-add-interface $host1_core
$host1_if1

set router [$ns node]

$ns duplex-link $host0_if0 $router .5Mb
200ms DropTail

$ns duplex-link $host0_if1 $router .5Mb
200ms DropTail

$ns duplex-link $host1_if0 $router .5Mb
200ms DropTail

$ns duplex-link $host1_if1 $router .5Mb
200ms DropTail

set sctp0 [new Agent/SCTP]

$ns multihome-attach-agent $host0_core
$sctp0

$sctp0 set fid_ 0

$sctp0 set debugMask_ -1

$sctp0 set debugFileIndex_ 0

$sctp0 set mtu_ 1500

$sctp0 set dataChunkSize_ 1468

$sctp0 set numOutStreams_ 1

$sctp0 set oneHeartbeatTimer_ 0 # each dest
has its own heartbeat timer

set trace_ch [open trace.sctp w]

$sctp0 set trace_all_ 1 # trace
them all on oneline

$sctp0 trace cwnd_

$sctp0 trace rto_

$sctp0 trace errorCount_

$sctp0 attach $trace_ch

set sctp1 [new Agent/SCTP]

$ns multihome-attach-agent $host1_core
$sctp1

$sctp1 set debugMask_ -1

$sctp1 set debugFileIndex_ 1

$sctp1 set mtu_ 1500

$sctp1 set initialRwnd_ 131072

$sctp1 set useDelayedSacks_ 1

$ns color 0 Red

$ns color 1 Blue

$ns connect $sctp0 $sctp1

set ftp0 [new Application/FTP]

$ftp0 attach-agent $sctp0

$sctp0 set-primary-destination $host1_if0

change primary

$ns at 7.5 "$sctp0 set-primary-destination
$host1_if1"

$ns at 7.5 "$sctp0 print cwnd_"

11

$ns at 0.5 "$ftp0 start"

$ns at 12.0 "finish"

$ns run

B. The .awk scripts that generate the 3 performance
metrics, throughput, delay, and overhead:

throughput.awk

BEGIN {

 bytes_counter=0;

}

{

#Record the time that has elapsed

 time_elapsed = $2;

#Record the total number of bytes
received

if ($1=="r") {

 bytes_counter+= $6;

 }

#Calculate throughput & create
datasheet for plotting graph of throughput
vs. time

 if (time_elapsed > 0) {

 thru =
bytes_counter / time_elapsed;

 thru /= 1024;

 printf("%f
%f\n", time_elapsed, thru) > "throughput";

 }

}

END {

#OUTPUT the Overall Throughput in the
Terminal Window

print("Number of bytes received
=",bytes_counter);

print("Total simulation time (s)
=",time_elapsed);

print("Throughput (kB/s) =",thru);

}

delay.awk

BEGIN {

i=0;

total_delay=0;

pack_received_count=0;

}

{

#Here we record the time when
a data chunk is sent || The '-' in the first
flag of a trace file field, indicates

#when the corresponding chunk
was sent

 if ($1=="-" && $7=="-------D")

{

 #Keeping a record
of the 7th to 15th flags of a field of a
packet, denoted in the tracefile, helps us
to uniquely identify a packet

12

unique_pack_identifier[i]=$7 $8 $9

$10 $11 $12 $13 $14 $15;

pack_sent_time[i]=$2;

 i++;

 }

#Here we record the time when
the data chunk is received || The '-' in the
first flag of a trace file field, indicates

#when the corresponding packet
was received

#consequently, the delay for
that packet is found, and the average delay
is calculated

if ($1=="r" && $7=="-------D")

{

received_pack_identifier=$7 $8 $9 $10 $11
$12 $13 $14 $15;

 for (j=0;j<i+1;j++)

{

if(received_pack_identifier==unique_pack_ide
ntifier[j])

{

pack_received_count+=1;

pack_received_time=$2;

total_delay+=pack_received_time -
pack_sent_time[j];

#The
average delay calculation in milliseconds &
create datasheet for plotting delay

avg_delay=total_delay/pack_received_count*10
00;

printf("%f %f\n", pack_received_time,
avg_delay) > "delay";

break;

}

}

}

}

END {

#OUTPUT the Overall Delay in the Terminal
Window

print("Number of data chunks received
=",pack_received_count);

print("Total delay time for all the data
chunks (s) =",total_delay);

print("Average_Delay (ms) =",avg_delay);

}

overhead.awk

BEGIN {

 cntrl_count=0;

data_count=0;

}

{

#considering packets that are sent

if($1=="-")

{

13

#increment control chunk count
if packet sent is a control chunk

if ($7=="-------I"||
$7=="-------S"||$7=="-------H"||$7=="-------
B"){

cntrl_count+=1;

}

#increment data chunk count if
packet sent is a data chunk

if ($7=="-------D"){

data_count+=1;

#Calculate overhead &
create datasheet for plotting graph of
overhead vs. data packets sent

overhead=(cntrl_count/data_count)*100;

printf("%f %f\n",
data_count, overhead) > "overhead";

}

 }

}

END {

#OUTPUT the Overall Overhead in the Terminal
Window

overhead=(cntrl_count/data_count)*100;

print("Number of control packets sent
=",cntrl_count);

print("Number of data packets sent
=",data_count);

print("Overhead =",overhead,"%");

printf("%f %f\n", data_count, overhead) >
"overhead";

}

14

