
A New approach for fixing bugs in Code Clones: Fix It
There Too (FITT)

Vaibhav Pratap Singh Saini
Department of Informatics

Bren School of ICS
University of California, Irvine

vpsaini@uci.edu

Aftab Hussain
Department of Informatics

Bren School of ICS
University of California, Irvine

aftabh@uci.edu

ABSTRACT
Code cloning, the process of reusing similar code segments
in different parts of a project, has been a prevalent prac-
tice among software developers. However as projects ma-
ture, developers lose cognizance about the existing clones in
their projects. This is a problem particularly in situations
where the cloned code contains bug patterns. In fact, it has
been shown in a recent study that in 75% of cases involv-
ing code duplication, bug-patterns associated with a code
is propogated “as-is” to atleast one of the clone-siblings of
the code. Therefore, when fixing bug-patterns in a code seg-
ment, it would save the developers a lot of time and effort
in finding other similar bug-patterns if they knew about the
presence of clones of the code segment. In this paper, we
propose a plugin for Eclipse that will proactively inform the
developer about the clones of a method in a Java project
while the developer is working on the method. This tool
will thus improve developers’ awareness about the presence
of clones in their projects, which will enable them to take
appropriate measures while they are correcting any of the
clones.

Keywords
clone detection, extending IDEs, information retrieval

1. INTRODUCTION
Code cloning via copy-and-paste is a common practice in

software engineering for quick code reuse. Since existing bug
pattern can be carried forward when cloning, we present a
tool that will seamlessly enable developers to detect clones
while they are coding, which would as a result simplify the
task of bug fixing among clones. However, before discussing
the main motivation of this work for detecting clones, it
is important to elaborate on the present stance of software
engineers and researchers on the use of clones.
Traditionally, the practice of code cloning has been consid-

ered harmful and a symptom of the ignorance of important
design abstractions. As such, many previous studies suggest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CONF Irvine, California
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

approaches to facilitate the discovery, removal, and refactor-
ing of clones. But recent studies have shown that cloning
is not always harmful and has advantages like rapid devel-
opment, reuse of tested code, separation of concerns, etc.
These characteristics have recently attracted researchers to
conduct empirical studies and present evidence about the
harmfulness of code cloning. Such attempts have questioned
our conventional wisdom about the harmful nature of clones.
For example, Kasper and Godfrey [14] presented evidence
that clones may be intentional and improve developer pro-
ductivity. Kim et al. [15] found that most of the clones are
short lived and hence investment made in refactoring them
may not be worth the effort. Toomim et al. [26] showed that
managing clones via linked editing to edit multiple cloned
regions without much programmer intervention can be an
efficient way of dealing with clones. Rahman et al. [22] con-
ducted a study to assess the impact of clones on defect oc-
currence of software products. They conducted the study
on four subject systems and did not find any evidence that
cloning is harmful. Such findings suggest that cloning may
not be as harmful as perceived to be.

Given that clones are prevalently used, regardless of the
attitudes of developers towards them, detecting clones could
be useful in a number of aspects. In this paper, we are in-
terested in how code clone detection could help us in bug
fixing. The motivation to pursue this interest came from a
recent study by Hitesh et al. [24] which shows that in about
75% of cases, the bug pattern associated with the code is
duplicated as-is when the code is cloned. Also, while fixing
a bug in a piece of code, it is very unlikely that the developer
is aware of all the places where this code has been cloned, if
any, in the project. While many clone detection approaches
have been proposed, which are discussed in Section 5, we
propose a plugin for Eclipse that will inform the developer
about the clones of a method in a Java project while the
developer is working on the method, without imposing any
significant cognitive burden on the developer.

Structure of the paper. In Section 5, we present the
related work in the area of clone detection: we discuss the
extent of the problem of clones based on previous studies and
the theoretical approaches that have been adopted to tackle
the problem of detecting tools. In Section 3, we describe our
tool and its underlying mechanism in details. In Section 2,
we present the findings of a survey we carried out to elicit
the demand for such a tool among software developers. In
Section 4, we present the evaluation plan of our tool. We
conclude our paper in Section 6, giving ideas on future efforts

University of California, Irvine, 2014

in the area.

2. SURVEY OF TOOL’S DEMAND
In this section, we present the findings of a survey we

carried out in order to find out the existing need for an
integrated clone detection plugin in the development envi-
ronment among developers and others involved in software
development. In Subsection 2.1, we describe the underlying
goals of the survey. In Subsection 2.2, we present the re-
sults of our survey. A discussion of the results is provided
in Subsection 2.3.

2.1 Survey Goals
The survey was designed to address the following hypothe-

ses,

• Hypothesis 1. Reuse of code through copy-pasting is a
common practice.

• Hypothesis 2. When fixing bugs in a particular code
segment of the project, developers often look into other
similar code segments that may exist in the project.

• Hypothesis 3. A tool that can detect similar code seg-
ments in an automated fashion would be desirable.

Although Hypothesis 1, which refers to a common type of
cloning practice, has already been well established by virtue
of previous studies, it was necessary to ascertain whether it
holds true with current practitioners. Hypothesis 2 states
the fundamental motivation behind this work that under-
scores the relationship between bugs and clones in software
code. Finally, by testing for Hypothesis 3 we verify our ap-
proach for simplifying bug fixing through clone detection.

2.2 Survey Results
A 5-question survey was prepared and was sent out over

social media. A total of 72 responses were obtained. Figures
1-5 show the results for each of the questions.

Figure 1: Demographic information of respondents.

Figure 2: The practice of code copying.

Figure 3: The practice of searching for similar code
while bug fixing.

Figure 4: The frequency of searching for similar
code.

Figure 5: The demand for a clone detection plugin.

2.3 Discussion on Results
From Figure 1 we see that 91% of the respondents had at

least a year’s experience at the time of completing our sur-
vey, which boosts the relevance of the rest of the questions
of the survey with respect to our hypotheses. Figure 2 di-
rectly addresses and confirms Hypothesis 1. Figures 3 and 4

explore the relation between bugs and clones in development
practice. With 74% of the respondents confirming that they
search for code segments similar to the one in which they
are fixing bugs (of whom 36% do so always), there is enough
reason to believe that bugs are carried forward through code
reuse (via copy and paste). These findings also indicate that
the developers are aware of the possibility of having bugs in
clones, which is why they search for similar code when bug
fixing (Proving Hypothesis 2). Having confirmed Hypothe-
ses 1 and 2, we had to investigate whether a tool that assists
in this search whilst programming would be found useful.
Figure 5 gives a 90 % approval for the need of such a tool,
hence proving hypothesis 3.

3. PLUGIN DESCRIPTION
In this section we elaborate on our plugin, FITT. We

explain our underlying algorithm of FITT’s clone detec-
tion technique in Subsection 3.1. The plugin’s interface
and the rationale behind the interface’s design decisions are
discussed in Subsection 3.2. Finally in Subsection 3.3 we
present the implementation details of FITT.

3.1 Clone Detection Algorithm
To detect the clones in the Java projects, we are using the

efficient index-based algorithm as proposed by Hitesh et al.
in [24]. Figure 6 shows the algorithm and the work flow is
shown in Figure 7. The algorithm uses a filtering technique
that has shown to significantly speed up the clone detection
process when compared the other naive based techniques.
We are using Java methods as a code block, however al-
gorithm poses no restriction on selecting other entities like
Java class or packages as code blocks.
When the plugin gets activated, it traverses the entire

project using Eclipse JDT (Java Development Toolkit) and
feeds the code blocks to the indexer where their partial in-
verted index and forward index gets created, as shown in
Figure 7. The detect clones module uses the current method
where the developer is currently working on as an query
block and then searches the inverted index to obtain the
candidate clones. For each candidate clone, detect clones
module uses the forward index to obtain all its terms and
then calculates the similarity between the candidate clone
block and the query block. If the similarity value satisfies
the user defined similarity threshold value, the candidate
clone gets reported as a clone.

3.2 Plugin User Interface
The Eclipse Java editor acts as the primary user interface

for FITT plugin. The plugin is designed to have a mini-
malistic design in order to minimize the cognitive burden on
the user for using and understanding a new utility in the
environment. Figure 8 shows a red colored annotation sig-
nifying that the FITT has found clones for the method the
developer is currently working on. Annotation can have one
out of three colors: a) Red - signifies there are more than
10 clones of the current method in the project; b) Yellow -
signifies there are five to 10 clones and c) Green - signifies
the existence of less than five clones. A click on the anno-
tation would show a view-part, as shown in Figure 9, listing
all the clones of the current method. This list can be used
to navigate to the clones of the current method.

3.3 Implementation Details

Figure 6: Algorithm for efficient Index-based ap-
proach to detect clones.

Figure 7: Workflow of efficient index-based ap-
proach.

Figure 8: Red colored annotation signifying the clones of the current method have been detected.

Figure 9: Context menu showing detected clones.

Figure 10: FITT Modules

FITT has four modules as shown in Figure 10. In the
following, we discuss each of the modules.

3.3.1 Project Traverser Module: creating the input
for the plugin

On activation of the plugin, it traverses the current project
the developer is working on and while traversing it creates a
file where each line represents a bag. A bag is an abstraction
for a java method. It contains terms and their frequency in
the method. We use EclipseâĂŹs JDT (Java Development
Toolkit) library to traverse the abstract syntax tree of the
current project.

3.3.2 Indexer Module: creating indexes using the in-
put

The file created by the Project Traverser Module is used
as an input to the Indexer Module which then creates a
partial inverted index and a forward inverted index. The
partial inverted index is used to search the candidate clones
whereas the forward index is used to verify if the candidates
are clones or not.

3.3.3 Clone Detector Module: detecting the clones
The clone detector module listens to the selection changed

event on the eclipse editor. It gets the current method infor-
mation from the event object using which it creates a query
block using the current method and then searches for the
clones using the indexes created by the indexer Module. It
reports the clones of the current methods in a clone-report
file.

3.3.4 Reporter Module: reporting the clones
After the clone detector module detects the clones of the

current method, the reporting module does 3 tasks; i) create
an annotation on the editor (where the line numbers are
written). This annotation signifies the presence of clones of
the current method in the project. ii) read the clone-report
file as created by the clone detector and iii) creates a view
part to display the information about the clones.

4. FUTURE EVALUATION
In this section, we present the evaluation methodology

we look forward to carry out on our tool. We shall focus
on the following evaluation criteria: performance (4.1) and
ease-of-use (4.2), where we shall a comparison with previ-
ous CP-Miner [7] and CnP [8] will be made based on usage
experience.

4.1 Performance Evaluation
We shall evaluate the performance of the tool by record-

ing the startup times the tool needs for projects of varying
sizes (the largest portion of the tool’s startup time is used
for building the repository index of the project). This eval-
uation will help us determine the degree of scalability of our
tool. Next we shall record the time the tool needs to enlist
the detected clones in the user interface.

4.2 Ease-of-Use Assessment
In order to evaluate the ease-of-use of our tool, we will

hire two developers having at least two years of industry
experience who are well-versed in using the Eclipse IDE.
We shall provide them three plugins altogether: FITT, CnP,
and CP-Miner. We will install the plugins in their IDEs and
shall ask them to work on their projects using the plugins
for 30 days, so that they dedicate 10 consecutive days for
each individual plugin. After each 10-day period we shall
ask them to complete a survey in order to capture their
experiences with the tool. Our survey questions will form
around the following notions:

• Work interference (e.g., how distractive the tool was
while they were coding).

• Context-switching between tool output and coding ed-
itor

• Usefulness of the tools’ suggestions (e.g. how often did
you find bugs in the clone methods suggested by the
tool?).

A scale based answering scheme will be used for the sur-
vey, which would enable us to compare the survey results of
each tool in a consistent manner.

5. RELATED WORK
In this section we present the works in the field of clone de-

tection. We have categorized the works across four different
dimensions. In Subsection 5.1, we elaborate on the theoret-
ical and empirical evidences that are available in the litera-
ture related to the problem of cloning. In Subsection 5.2, we
discuss previous approaches that have been used for clone
detection, and emphasize upon how our tool relates to their
approaches. In Subsection 5.3, we stress upon the core con-
cepts that were followed in the previous approaches. Finally
in Subsection 5.4, we elaborate on a tool that we found to be
most similar to our tool, which was yet different from ours
in a number of important ways.

5.1 Studies related to theoretical and empiri-
cal evidences of cloning

Reusing code fragments via copy-and-paste, with or with-
out modifications or adaptations, also known as code cloning,
has become a common behavior of software engineers [5]. Al-
though pervasive, code cloning has traditionally been crit-
icized by researchers and leading practitioners alike. Par-
nas [4] said ”if you use copy and paste while you’re cod-
ing, you’re probably committing a design error.” Indeed, if
instead of copying code, we move it into its own method,
future modifications will be easier because we will need to
modify the code in only one location. The code will be more
reliable because we will have only one place to ensure that
the code is correct. Consequently, a considerable amount
of research in cloning is concentrated on detecting clones in
existing source code [3, 2, 5, 11, 13, 17, 19], removing and
refactoring them [25], emphasizing the need of clone detec-
tion tools to assist developers in identifying the similar code
blocks.

5.2 Previous clone detection approaches
Toomim et al. [26] showed that managing clones via linked

editing to edit multiple cloned regions without much pro-
grammer intervention could be an efficient way of dealing
with clones. A limitation of their work is that it requires the
developer to manually select and mark up code fragments as
clones. Furthermore, Linked Editing is only applicable when
identical changes are required for all of the clones. Our work
comes closest to Patricia Jablonski’s work [8] where they also
propose a tool named CnP, which will detect copy-and-paste
in the IDE (Integrated Development Environment) in real
time. When selected statements are copied, CnP can deter-
mine the contents of the clipboard and use this information
later on for error detection and other purposes. Once the
statements are pasted, CnP then, highlights the statements
in the IDE’s editor so that the developer can keep track of
both the pasted code and its origin. Our tool differs from
Patricia’s work. We use a clone detector to detect all the
existing clones and it doesn’t require capturing the copy and
paste events. Our tool can be used to detect clones in an
existing project including legacy systems.

5.3 Core concepts behind previous clone de-
tection techniques

Code clone detection aims at finding exact or similar pieces
of code known as code clones. Several techniques have been
proposed for clone detection over many years [22, 6, 16, 3, 20,
9, 21, 10, 12, 1, 27, 18]. These techniques differ in many ways
ranging from the type of detection algorithm they use to
the source code representation they operate on. Techniques
using various representations include tokens [13], abstract
syntax trees (AST) [3, 10] program dependence graphs [6,
16], suffix trees [12, 13, 18], text representations [1], hash
representations [27], etc. Each of these different approaches
has their own merits and is useful for different use-cases.
For example, AST based techniques have high precision,
and are useful for refactoring, but may not scale. More-
over, token-based techniques have high recall but may yield
clones, which are not syntactically complete [23]. They are
useful where high recall is important.

5.4 A similar tool
Li et al. [7], have created a tool called CP-Miner that

has attempted to detect copy-paste errors in the context of
traditional clone detection. CP-Miner has error detection
capabilities top. CP-Miner uses a token-based approach
with data mining and a gap constraint. CP-Miner deter-
mines a mapping relationship between identifiers in copy-
and-pasted code fragments and then applies a heuristic to
conclude whether the fragments are consistent or not. We
are using an efficient index-based technique, which falls un-
der the information retrieval approach.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented FITT, an easy-to-use

clone detection tool for the Eclipse IDE. The main motiva-
tion behind building this tool was the fact that in a majority
of code cloning cases, as established by a recent study, it has
been found that existing bugs in a code segment are carried
forward “as is” when the code segment is copied. In ad-
dition to that coders are generally unaware of the existing
clones of a code segment in their project. Consequently,
a tool that proactively informs developers about existing
clones of a code segment while they are working on it would
greatly reduce the chances of missing similar bugs that may
exist elsewhere in the project. A pre-assessment survey con-
firmed the demand of such a tool among software developers.
Currently, our tool can successfully detect clones within an
Eclipse project at the method-level, for code written in Java.

For future implementations, we look forward to extend
FITT to detect class-level clones and work with other pro-
gramming languages such as Python. The present imple-
mentation only uses the initial index of the project created
during tool-startup, and does not take into account changes
made during a coding session. The next step would be to
customize the tool’s index generation phase to execute inter-
mittently. Since index generation would take a considerable
time particularly for large projects, it is important these ex-
ecutions are implemented in a multi-threaded fashion such
that the work flow of the developer is not interrupted while
the index generation takes place.

With regard to the user interface of FITT, the present
implementation uses a categorized marker-coloring scheme
for indicating the pervasiveness of the current method, which
might restrict the user’s view of how widespread the method
is. An improvement would be to use a graded coloring
scheme calibrated with a pervasiveness metric. Another area
of improvement would be the output list (context menu)
of the clone method names. Currently, the list is ordered
solely based on the degree of similarity between the current
method and the clone, with the most similar clones appear-
ing in the beginning of the list. A ranking that also takes
into consideration the relevance clone method with respect
to the current method could be used, where relevance could
be based on the location of the clones within a project (e.g.
clone siblings in the same class as the current method could
more relevant than other clone siblings).

7. REFERENCES
[1] M. Asaduzzaman, C. K. Roy, and K. Penta. Lhdiff: A

language-independent hybrid approach for tracking
source code lines. In Proceedings of International
Conference on Software Maintenance ’13, pages
230–239, 2013.

[2] B. Baker. A program for identifying duplicated code.
In Computing Science and Statistics, pages 24–49,
1992.

[3] I. Baxter, A. Yahin, L. Moura, M. SantâĂŹAnna, and
L. Bier. Clone detection using abstract syntax trees.
In Proceedings of ICSM ’98, page 368, 1988.

[4] S. Ducasse, M. Rieger, and S. Demeyer. On the
criteria to be used in decomposing systems into
modules. In Commun. ACM, pages 1053–1058, 1972.

[5] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proceedings of the IEEE International Conference
on Software Maintenance, pages 109–118. IEEE
Computer Society, 1999.

[6] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in optimization.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 9(3):319–349, 1987.

[7] J. Ferrante, K. Ottenstein, and J. Warren. Cp-miner:
finding copy-paste and related bugs in large-scale
software code. IEEE Transactions on Software
Engineering, 32(3):176–192, 2006.

[8] P. Jablonski. Managing the copy-and-paste
programming practice. In Proceedings of OOPSLA
’07, pages 933–934. ACM, 2007.

[9] Y. Jia, D. Binkley, M. Harman, J. Krinke, and
M. Matsushita. Kclone: A proposed approach to fast
precise code clone detection. In Proceedings of IWSC
’09, 2009.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of ICSE ’07, pages 96–105,
2007.

[11] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In Proceedings of the 1993
conference of the Centre for Advanced Studies on
Collaborative research and Software Engineering,
pages 171–183. IBM Press, 1993.

[12] E. Juergens, F. Deissenboeck, and B. Hummel.
Clonedetective - a workbench for clone detection
research. In Proceedings of ICSE ’09, pages 603–606,
2009.

[13] T. Kamiya, S. Kusumoto, and K. Inouey. ”ccfinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[14] C. Kasper and M. Godfrey. ”cloning considered
harmful”: patterns of cloning in software. Empirical
Software Engineering, 13(6):645–692, 2008.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In In
Proceedings of FSE, pages 235–255, 2005.

[16] R. Komondoor and S. Horwitz. Semantics-preserving
procedure extraction. In Proceedings of 27th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 155–169. ACM, 2000.

[17] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In SAS ’01
Proceedings of the 8th International Symposium on
Static Analysis, pages 40–56. ACM, 2001.

[18] R. Koschke. Large-scale inter-system clone detection

using suffix trees. In Proceedings of CSMR 2012, pages
309–318, 2012.

[19] J. Krinke. Identifying similar code with program
dependence graphs. In Proceedings of the Eighth
Working Conference on Reverse Engineering
(WCRE’01), pages 301–309. IEEE Computer Society,
2001.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In Proceedings of ICSM
’96, page 244. IEEE, 1996.

[21] T. Nguyen, H. Nguyen, J. Al-Kofahi, N. Pham, and
T. Nguyen. Scalable and incremental clone detection
for evolving software. In Proceedings of International
Conference of Software Maintenance ’09, pages
491–494, 2009.

[22] F. Rahman, C. Bird, and P. Devanbu. Clones: what is
that smell? Empirical Software Engineering,
17(4-5):503–530, 2012.

[23] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, 2009.

[24] H. Sajnani and C. Lopes. A parallel and ef̈ıň ↪Acient
approach to large scale clone detection. In IWSC,
pages 46–52. IEEE, 2013.

[25] M. Shomrat and Y. Feldman. Object-oriented
programming. In Proceedings of ECOOP 2013, Lecture
Notes in Computer Science, pages 502–526, 2013.

[26] M. Toomim, A. Begel, and S. Graham. Managing
duplicated code with linked editing. In IEEE
Symposium on Visual Languages and Human Centric
Computing, pages 173–180, 2004.

[27] S. Uddin, C. Roy, K. Schneider, and A. Hindle. On the
effectiveness of simhash for detecting near-miss clones
in large scale software systems. In Proceedings of 13th
Working Conference on Reverse Engineering., pages
13–22, 2011.

