
Effect of Follow and Watch Relationships in Pull Requests

Di Yang
Mondego Lab

Department of Informatics,
Bren School of ICS

University of California, Irvine
diy4@uci.edu

Aftab Hussain
Mondego Lab

Department of Informatics,
Bren School of ICS

University of California, Irvine
aftabh@uci.edu

Cristina Videira Lopes
Mondego Lab

Department of Informatics,
Bren School of ICS

University of California, Irvine
lopes@ics.uci.edu

ABSTRACT
GitHub is both a code repository system and a social net-
working site. The social graph is built by “following a user”
or“watching a project.” Making contributions to other users’
projects involves sending a pull request by the person com-
mitting the code, and the consequent acceptance of the pull
request (i.e. merging the committed code) by the project
owner at some later time. The goal of our study is to in-
vestigate whether the relationships built by following users
and watching projects influence the response time of pull re-
quests. From the given data set of 90 projects from GitHub,
we retrieve the response times of all the pull requests, and
identify those pull requests made by followers and watchers.
We perform the Kruskal Wallis test to compare each pair
of these user groups in order to assess any significant differ-
ences between the mean response times of these groups.
Our findings are twofold. First, we found that very few

pull requests are made by the followers of the project owner
or watchers of the project, that is, the social network does
not reflect strongly the actual pull requests. Second, we did
not find statistically significant differences on the difference
of means among these different groups.

General Terms
Follower, Watcher, Response time, Kruskal Wallis Test

1. INTRODUCTION
GitHub is both a web-based hosting service for software

development projects and a social network for developers.
One of the interesting features in GitHub is the ability to
see what other people are working on and who they are con-
necting with. When developers “follow a user,” they will get
notifications on their dashboard about that user’s GitHub
activity. Developers can also stay up-to-date with a specific
project by “watching a project.”
Previous work ([1], [2]) observed the importance of social

network relations on work performance. In this light, we
hypothesized that there might be a correlation between the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR Hyderabad, India
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

social graphs and the actions that developers perform on
their projects. Specifically, we investigated whether follow
and watch relations affect the amount of pull requests and
the response time of those pull requests. That is, if the
committer of the pull request is a follower of the owner or a
watcher to the project, will that influence the response time
for merging their pull requests? If so, will it decrease the
response time? If this were to be the case, project planners
and recruiters could look for such relations and create teams
that contain these relations.

This paper is organized as follows: in Section 2, we ex-
plain in detail about how we get the response time and the
follower/watcher relationships from the given data sets. In
Section 3, we present our experimental results and analy-
sis. Finally in Section 4, we conclude our report and present
other research problems in the area that could be explored
in the future.

2. RESEARCH METHODOLOGY
We used the MYSQL dump provided for this Data Chal-

lenge consisting of data for 90 GitHub projects. After care-
fully analyzing the given data set and the schema, we find
four key tables that are related to the question, whose columns
are shown in Table 1. In the following subsections we shall
demonstrate how we obtained each of these relational database
tables.

Table 1: Tables used from MySQL dump
Database Table Fields
pull_request_history id, pull request id, cre-

ated at, ext ref id, action,
actor id

pull_request_commits pull request id, commits id
commits id, sha, author id, commit-

ter id, project id, created at,
ext ref id

followers user id, follower id, cre-
ated at, ext ref id

watchers repo id, user id, created at,
ext ref id

2.1 Building the response_time table
In order to untangle the relationship between social net-

work and the response time of a pull request, we need to
get the response time first. The table pull request history
provides us with the information. There are three values in2014

Figure 1: SQL Query for retrieving the response time table for all users.

Figure 2: SQL Query for retrieving the response time table for followers.

Figure 3: SQL Query for retrieving the response time table for watchers.

the action column of the table: opened, merged, and closed,
which have their created time respectively in the created at
column. In GitHub, a pull request can have two life cycles:
created, merged, then closed, or created and closed. In our
study, we only consider the pull requests that have been
approved, aka merged. So we calculate the time difference
between opened and merged. Then the response time table
can be created by the SQL query as given in Figure 1.

2.2 Connect response_time with followers
After obtaining the response time, we need to find out

whether the committer of the pull request is a follower of
the owner of the project. From Table 1, we can observe that
the commits table contains the information of the author (i.e
owner) and the committer. Also, the pull request commits
table connects the pull request table and the commits table
with pull request id and commit id. Followers’ information
is stored in the followers table, which contains the relation
between user (i.e owner) and followers. From all the infor-
mation we have above, we can identify if the committer of
the pull request is the follower of the owner of the project,
and what the response time is. This is achieved using the
query given in Figure 2. One pull request can have multiple
commits, so there can be many duplicates. To eliminate the
duplicates, we group the commits by pull request.

2.3 Connect response_time with watchers
The difference between followers and watchers is that fol-

lowers follow another user’s activities, while watchers watch
a specific project. The repo id in the watchers table is the
project id for a user to watch. With the committer id and
project id present in the commits table, we can again con-
nect the pull request response time with the watcher’ infor-
mation, using the query shown in Figure 3.

3. RESULTS AND ANALYSIS
In this section, we present the results of our study and

elaborate upon the analysis techniques that have been used.
Table 3 shows the number of approved pull requests for

each user group. As shown in the table, the total number
of approved pull requests we observed was 34,126. Figures
4 and 5 show the response times for the pull requests for
the three user groups. These graphs clearly suggest that the
response times are not normally distributed.

Figure 4: Response time series for all user groups.

Figure 5: Response time series for followers and
watchers.

3.1 Merged Pull Requests

Table 2: Number of approved pull requests by type
of parent requester

Pull Requester Type No. of Pull Requests
All users 34,125
Followers 94
Watchers 132

Table 3: Mean response times of pull requests
Pull Requester Type Mean Response Time (s)

All users 608,476
Followers 473,653
Watchers 1,037,830

The first interesting, and somewhat surprising, finding of
our study is that out of 34,125 merged pull requests, only
0.28 % are from followers of the projects’ owners, and only
0.39 % are from watchers of the projects. This can ei-
ther suggest that followers seldom perform pull requests to
projects of people whom they are following (and watchers
seldom perform pull requests towards the projects they are
watching), or it may suggest project owners seldom merge
pull requests coming from their followers or from their projects’
watchers.

3.2 Mean Response Times
Table 3 shows the mean response times for pull requests

for the three different groups of interest. As seen, the mean
response times for followers’ requests is around 22.2% smaller
than that for all requests. The mean response times for
watchers’ requests is around 70.56% larger than that for all
requests. Considering the fact that the variance of these
data points is high, there is the need to assess whether these
differences in means are statistically significant. This is ex-
plained in the following subsections.

3.3 Impact of Follower Relationships
In order to ascertain whether there is any significant dif-

ference between the response times for followers’ requests
and the response times for all requests, we performed the
Kruskal Wallis test [3] on the two samples. In particular we
tested whether the samples have identical distribution func-
tions. Thus, our null hypothesis was that the two samples
are identical. We obtained a p-value of 0.4805 for the test.
Controlling for a 95% type I error, we did not reject the null
hypothesis, and thus concluded that the samples’ response
times are not significantly different.

3.4 Impact of Watcher Relationships
In order to ascertain whether there is any significant dif-

ference between the response times for watchers’ requests
and the response times for all requests, we also performed
the Kruskal Wallis test on the two samples in the same man-
ner as above. Our null hypothesis was that the two samples
are identical. We obtained a p-value of 0.4655 for the test.
Controlling for a 95% type I error, we did not reject the null
hypothesis, and thus concluded that the samples’ response
times are not significantly different.

3.5 Differences Between Follower and Watcher
Relationships

In order to ascertain whether there is any significant dif-
ference between the response times for watchers’ requests
and the response times for followers’ requests, we again per-
formed the Kruskal Wallis test on the two samples.Our null
hypothesis was that the two samples are identical. We ob-
tained a p-value of 0.4805 for the test. Controlling for a 95%
type I error, we did not reject the null hypothesis, and thus
concluded that the samples’ response times are not signifi-
cantly different.

3.6 Outliers
We have identified and discarded two outliers from our

sample of followers, which had extremely high response time
values; both were in the order of 10 million seconds, which
were much larger than both the maximum value from the
remaining sample set (6 million s), and the mean of the
remaining sample set (473653 s).

4. CONCLUSION AND DISCUSSION
The purpose of our study was to investigate whether the

committer being a follower of the owner of a project or be-
ing a watcher of a project affects the owner’s response time
to merging the pull requests. After examining the detailed
meanings of each table, we worked out the connections be-
tween five key tables and built the response time tables for
all pull requests: the pull requests by followers, and the
ones by watchers. As we can see from the analysis results,
pull requests from followers have a smaller response time,
but the differences are not statistically significant. Another
finding is that very few people who are followers of project
owners actually send pull requests. Therefore, the social net-
work does not strongly reflect the actual behavior of the pull
requests and there is a gap between the social networking
aspect and code sharing aspect of GitHub.

In future, it would be interesting to investigate how users
react to pull requests that come from those whom they fol-
low. Intuitively, it would be reasonable to assume that peo-
ple generally follow those users in GitHub whose codes in-
terest them. Therefore, it is likely that pull requests coming
from those whom a user follows may be approved sooner by
the user. An analysis to prove or disprove this assumption
would be of interest. In regard to response time there may
be other factors that may have an effect. For example the
owner’s own activity habit. Some owners may be very ac-
tive and check their accounts every day, others may seldom
visit GitHub, which may have significant influence to their
response time to pull requests.

5. ACKNOWLEDGMENTS
We would like to thank Thomas Debeauvais, Vaibhav

Pratap Singh Saini, and Nicolas Lopez-Giraldo for their
valuable advice on statistical analysis techniques.

6. REFERENCES
[1] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social

coding in github: Transparency and collaboration in an
open software repository. In Proceedings of the ACM
2012 conference on Computer Supported Cooperative
Work, pages 1277–1286, 2012.

[2] J. DiMicco, D. Millen, W. Geyer, and C. Dugan.
Motivations for social networking at work. In In Proc
CSCW 2008, pages 711–720, 2008.

[3] W. H. Kruskal and W. A. Wallis. Use of ranks in
one-criterion variance analysis. Journal of the American
Statistical Association, 47(260):583–621, 1952.

