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Abstract

In this technical report, we present a graph processing sys-
tem, Graph-DTC. It is designed to efficiently compute dy-
namic transitive closure (DTC) on program graphs of large
complex systems (e.g. Linux), which may be of the order of
a billion vertices, using a single machine. DTC computation
enables us to get precise software diagnostics such as bugs
and data flow information. Thomas Reps first showed in his
seminal work how graph reachability problems like the DTC
problem could aid different program analysis techniques.

While the DTC problem has been studied for more than
two decades, implementing it on large graphs has not been
scalable. As a result, most existing program analysis and bug
detection techniques have been deprived of detailed program
information (e.g. precise aliasing information), which has
limited their highest attainable precision. In order to lever-
age those techniques, we introduce a novel graph computa-
tion model, the edge-pair centric model, on which we build
GraphDTC. GraphDTC enables those techniques to capture
more detailed information about the software, and thus pro-
duce more precise diagnostics information.

1. Introduction

Static program analysis techniques such as alias/points-to
analysis, flow/path-sensitive analysis, context-sensitive anal-
ysis, and object-sensitive analysis have been extensively
used for revealing various diagnostic information of soft-
ware programs [20]. For instance, alias analysis, a technique
for determining pointers that point to the same location [2],
has been used to discover the presence of certain kinds of
faults in Linux and OpenBSD kernels [l [14]. Another ex-
ample is the work of Bugrara and Aiken [3] who checked for
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security vulnerabilities in Linux, using path- and context-
sensitive analyses, two subtypes of alias analysis. They ex-
tracted unchecked user pointer dereferences in Linux to pre-
vent the exposure of the kernel space. More recently, alias
analysis have also been used to identify resource leaks [16].

Despite their success in various important applications,
most of these static program analysis techniques had to grap-
ple with one major challenge: how to balance the trade-off
between (1) the precision of their outcomes (e.g. false nega-
tives in bug detection) and (2) their efficiency.

The precision of these techniques depends on the com-
prehensiveness of the information used by them. For ex-
ample, context-sensitive analysis uses information about the
calling context of program method calls, whereas context-
insensitive analysis does not [20]. Similarly, flow-sensitive
analysis considers the flow of the program and thus yields
separate solutions for each ordering of the program points,
whereas flow-insensitive analysis ignores flow information
and yields an approximated solution that holds for all order-
ings of program points in a program |[7].

Unfortunately, greater precision comes with a cost on ef-
ficiency. As a result, the scalability of precise analysis tech-
niques have been restricted. For instance, context-sensitive
analysis based techniques have been shown to scale to hun-
dreds of thousands of lines [6}18]], path-sensitive to tens of
thousands of lines [6]|19]. Alternately, alias analyses that
scale to a million lines of code have been found to give im-
precise alias information with respect to the actual aliasing
when the code is executed [|6/(10][12].

To address this precision-efficiency bottleneck, researchers
have used program abstraction in order to keep only infor-
mation that is relevant for proving properties of interest [21].
Such approaches have an overhead of computing the ab-
stractions. Other researchers have addressed the scalability
problem by simply ignoring intra-procedural analysis and
by only analyzing procedures independently (e.g. [3]).

In this work, we tackle the problem head-on, by providing
an infrastructure that can provide the large scale computation
that precise program analysis techniques need for both intra-
procedural and even inter-procedural analysis. We design a
graph processing system that can be used to perform compu-



tations over massive program graphs (e.g. call graphs) which
are used by such techniques. Our inspiration comes from the
insights of Thomas Reps [[15].

Reps shows that program analysis problems could be
transformed to graph reachability problems. In particular, he
shows how program analysis problems could be reduced to a
CFL (Context-Free Language)-reachability problem, which
is a type of a transitive closure (TC) problem. The TC prob-
lem is to determine paths, or connected edges, in a directed
graph. In the CFL-reachability problem, a path is considered
to connect two nodes only if the concatenation of the labels
on the edges of the path is a word in a particular context-
free language [15]. In order to solve the CFL-reachability
problem in a directed graph with labels, we need to itera-
tively add an edge each time we find such a path, such that
the edge connects the end vertices of the path. Solving the
CFL-reachability problem can thus be essentially reduced
to computing the dynamic transitive closure (DTC) of a di-
rected graph.

Our graph processing system, GraphDTC, can efficiently
compute the DTC on graphs of the order of a billion edges,
on a single machine. With such a system, we can facilitate
the use of the aforementioned precise program analysis tech-
niques and thus enable them to extract more precise diagnos-
tics information. (An elaborate plan for gathering such in-
formation is given towards the end of this report.) Although
there are other approaches for scaling program analysis, such
as [[LI7] and [7]] our approach is significantly different and
novel. We offer a systems solution to a bottleneck in soft-
ware analysis, by addressing a fundamental problem in pro-
gramming language design, the CFL-reachability problem.

The rest of this technical report is organized as follows:
Section [2| presents the fundamental computation model of
GraphDTC. Section [3] provides the design and implementa-
tion of our system. Then in Sectionfd] the evaluation plan for
GraphDTC is presented. Finally, we conclude the report in
Section[3

2. GraphDTC Computation Model

In this section, we present the GraphDTC computation
model. In we present a novel edge-pair centric (EPC)
model that can be used to address the DTC computation
on a directed, labelled graph. Finally we present the edge
computation model which is built on the EPC model in[2.2]

2.1 Edge-Pair Centric (EPC) Model

The EPC model allows us to (1) find whether there exists
a transitive relation between the source and sink vertices in
a path of two directed edges and (2) add an edge from the
source vertex to the sink vertex if such a relation exists, while
ensuring that the “new” edge does not already exist.

Fig.|l| demonstrates the use of the EPC model. It shows
all the out-edges of two vertices a and b, in an arbitrary
graph. We want to find whether there exists a transitive
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Figure 1. The Edge-Pair Centric (EPC) model.

relation from a to ¢y, and add a directed edge from a to
cy if the relation does exist. (The reason why b,’s other
out-edges have been dashed will be explained shortly). The
bold dashed edge shows the candidate new edge. If the
symbols represented by the edge values, v,_, vp, form a
valid production, in the sequence shown, then a transitive
relation exists between vertices a and c,. In that case, all
out-edges of a are scanned to check whether directed edge
(a, ¢y) already exists. If not, the edge is added.

As can be seen, to check for transitive closure between
source a and sink c,, we do not require to check out-edges
of the mid-vertex b,.. These edges do not belong to the EPC
model and have thus been shown as dashed.

2.2 Edge Computation Model

Fig. 2] shows the DTC computation model of GraphDTC.
In preprocessing, which will be shown in partitions
from the input graph are generated by allocating vertices
to intervals, creating a vertex-interval table, as shown in
Fig. [2(a). The conditions for creating the partitions are also
shown in the figure. Fig. 2[b) shows an example of two
partitions on which DTC computation has been done in the
memory. In this example, we have omitted edge values. The
edges with dashed arrows are new edges generated as a result
of the computation. For instance, edge (4, 21) was generated
as a result of the edges (4, 1) and (1, 21).

3. System Design and Implementation

In this section, we discuss the design and implementation
of all the phases of GraphDTC. We have implemented
GraphDTC in Java. The system has been written in approxi-
mately 4,000 lines of code (LOC).

Fig. |3| shows the preprocessing phase of Graph DTC.
The remaining phases, and the coordination between them,
are shown in Fig. f] The mechanisms of each phase are
explained in the following subsections.

3.1 Preprocessing (Partition Generation)

This phase generates partitions by scanning the input graph,
which is in an edge list format. In particular, each line of



(a) Vertex-Interval Table (VIT), before repartitioning.

Source Vertex Ids: yo Vi 1 Vit1 Vil Vj+1
1 1 1

Partition Ids: 1 1 2 1 500 1
1 1 1

Properties of the partitions:
1. All edges with the same source vertex id are in the same partition.

2. All partitions have roughly the same number of edges.
3. Source vertex ids in each partition are consecutive.
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N-1

(b) In-memory partitions after DTC-computation.
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Assumption: There is sufficient space in the memory to
hold the enlarged partitions after DTC-computation.

Figure 2. DTC computation model.
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Figure 4. GraphDTC computation phases.

the input graph file has the source vertex id, the destination
vertex id, and the edge value. The resultant partition file is
stored in a format similar to an adjacency list, as shown in
Fig. 5} All data are stored in binary in order to reduce the
overall size of the partition files.

While generating each partition, the size of each partition
should depend on the DRAM memory space for computa-
tion, such that at any time the memory can hold two parti-
tions, with just enough space for other meta data structures
and system resources. Following this constraint, we can en-

sure minimal unused memory space during each computa-
tion.

As shown in Fig. [3] other products of the preprocess-
ing phase are (1) degrees file for each partition, which is
used for setting up the array data structures of a partition
when the partition is loaded in the memory, (2) the Vertex-
Interval Table (VIT) which is used throughout all phases of
GraphDTC to refer to partition information of edges, and (3)
the scheduling information, which will be explained in Sub-

section[3.71



[Source Vertex Id]
[Count]

[Destination Vertex Id]
[Edge Value]
[Destination Vertex Id]
[Edge Value]
[Destination Vertex Id]
[Edge Value]

[Source Vertex Id]
[Count]

[Destination Vertex Id]
[Edge Value]

Figure 5. Partition data format on disk.

3.2 Loading Partitions

In order to load the partitions in the memory, we use ad-
jacency list data structures via multi-dimensional arrays as
shown in Fig. @a). A data structure, Vertices, is used
to refer to the row of each loaded source vertex (Fig. [[(b)).
Vertices will be useful later when we need to replace
only partition in the memory.

Fig. [/| shows another data structure, LoadedVertex
Interval that is set-up during loading. As can be seen,
it stores the corresponding indexes of the rows of the loaded
source vertices in the Vertices data structure. The mem-
ory consumption of LoadedVertex Interval is negli-
gible as the total number of partitions is small, and also at
most two partitions are loaded in the memory at any time.

3.3 Edge Computation

Fig. [8shows how the newly computed edges are stored in the
memory. As can be seen, the new edges are stored in a linked
list, where each node of the linked list is an array. In order to
refer to the linked lists we have used the NewEdge—-Lists
data structure as shown in Fig.[9]

We have used this storage design for new edges in order
to obviate the need to declare new memory space every time
a new edge is created, which is expensive considering the
number of computations we will be dealing with. Instead we
declare a new node only if an existing node is filled up. The
drawback of this approach is that there may be some unused
slots in these nodes.

Fig. [I0] shows how the actual computations are carried
out. As can be seen, we have used a multi-threaded design
for the computation, where new edge computations for each
source vertex row are done in-parallel.

The process is carried out iteratively, wherein during each
round, new edge computations are done based on the edges
of the previous round. To facilitate this, we used readable
barriers for each source vertex row.

These barriers limit the extent of a source vertex row that
can be read by a thread during a round. This consequently

prevents a thread from reading an array slot that is being
written on by another thread, which prevents atomicity is-
sues. In order to know when a round has ended, we used an
atomic integer variable.

The atomic integer variable keeps a count of the number
of active threads. Once it is 0, the computation proceeds
to the next round, shifting the readable barriers ahead. The
process repeats until no new edges have been generated in a
particular round.

Alternate design for edge computation. An alternate de-
sign for edge computation is shown in Fig. In this de-
sign, new edges are stored in a fixed-size multidimensional
array, the size of which is declared at the beginning of the
computation process. This approach eliminates the need to
declare space for new edges completely, as it does so at the
beginning. New edges are written in this array, and a table is
used to record the correspondence between new edges and
the loaded source vertex. The color coded cells in Fig.
illustrate this concept.

For parallelism, we use threads such that each thread
accesses a synchronized row lock array. A thread begins to
write on a row only if it has acquired a lock for that row.

The problem with this technique is the maintenance of
links. This is programmatically error prone as it requires
consistent updating of “new edges array” indexes (first posi-
tion, intermediate link positions, and last position) for each
loaded source vertex.

3.4 Post Computation Processing

The post-computation processing phase entails updating
the vertex interval table, the degrees information, and the
scheduling information, based on the new edges added. Al-
though the process is inexpensive, it could be expensive if
repartitioning is invoked on the partitions. We explain repar-
titioning next.

3.5 Repartitioning

Repartitioning is a sub-phase of post-computation process-
ing which is invoked if the sizes of any of the loaded par-
titions go beyond a threshold limit. (Typically it is around
a small percentage larger than the partition size). Like the
post-computation processing phase, the repartitioning also
involves updating the same in-memory data structures. How-
ever, the recalculation of scheduling information could bear
the most cost if the scheduling metric mentioned in part[3.7]
is used for it would require scanning all the partitions once
again. It is for this reason we want to keep the number of
repartitionings in the entire execution of the graph to be min-
imum. For more details on scheduling cost see[3.7]

3.6 Reloading

Although the main functionality of the reloading phase is
the same as that of the loading phase, which is loading
partitions, reloading also requires to preserve any of the



(a) Adjacency lists for each loaded partition.
Partition: 1 (edges with source vertices from 1 to 4)

(1 _12 13 14 15 15 8
source vertex id

(2) 3 9 11

3) 9 1 46 50

destination
vertex id of

(4) 11 18 31 10 existing edge

Partition: 3 (edges with source vertices from 9 to 13)

(9) 100 17 18 19
(10) 5 6 12

(11) 8 96 9 14
(12) 1 11 16 13

(13) 45 50 50 7 13

Similar corresponding adjacency lists are maintained for edge values.

(b) Vertices data structure to refer to the adjacency list of each loaded
source vertex.
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Figure 6. Loading design.

LoadedVertexInterval {
int firstVertex;

int lastVertex;

int indexStart;

int indexEnd;

int partitionId;
boolean isNewEdgeAdded;
}

Figure 7. LoadedVertexInterval data structure for keeping
information about partitions loaded in DRAM.

loaded partitions in the memory if the partition is among the
requested set of partitions for the next computation load.

There could be a number of strategies for reloading. One
such strategy is demonstrated in Fig. [T2} With this strategy,
partitions that have been repartitioned, and the new partitions
that have been generated as a result, are saved directly in the
disk and cleared from the memory, regardless of whether
or not they are requested in the next round. An alternate
and better strategy would be to hold all the partitions in
the memory till the next load request is received from the
scheduler.

3.7 Scheduling

The design of the scheduling phase of GraphDTC is summed
up in Fig.[T3] Scheduling in GraphDTC has two main objec-
tives: (1) Maximize the number of edge pairs that form a
path, and thus, that return a candidate new edge for check-
ing, in a single load. (2) Favor the reuse of memory allocated
for new edges during the previous load.

For objective (1), the scheduler uses a metric known as
the edge-destination count ratio, X, which is calculated for
all possible pairs of partitions. So say, for partitions P, and
Py, X(p, p,) 1s the fraction of edges in partition P, that point
to a vertex present in partition P, as a source vertex. A high
X value thus fulfills this objective.

The scheduler uses a map of edge-destination count ratios
and favors to pick the partition pair that has the highest
value, during each iteration. Calculating this map requires
scanning the entire graph (which is expensive), which was
done during preprocessing. In order to update this map,
we only need to scan the partitions to which new edges
were added. However, scanning the entire graph becomes
necessary if we want to update this map after repartitioning.

For fulfilling objective (2), the scheduler only needs to
know which partitions are currently loaded in the memory.

Finally, apart from fulfilling these objectives, the sched-
uler also keeps track of the pairs of partitions that have been
computed using the termination map. The purpose of this
map is to avoid loading a partition-pair that has already been
computed. It is important to note that during the computa-
tion of a partition-pair, if new edges were added, the com-
putations of the other partitions with these partitions would
again need to be performed. The termination map is updated
according to this principle.

The scheduler continues to request the loader to load
partitions at the conclusion of each computation iteration,
until the termination map shows all existing partition pairs
to be computed.



Partition: 1 (edges with source vertices from 1 to 4)

(1) 12 13 14 15 15 80—+9

11 18 H 31

(2) 3 9 11 @ 1 100 86

new
edge list

(3) 9 1 46 46 50 @—p 100 13 14 +_. 15 8

unused
list slot

(4) 11 18 31 10 5 6 7

Partition: 3 (edges with source vertices from 9 to 13)

(9) 100 17 18 19

(10) 5 6 12 1 16 13

(11) 86 96 9 14

destination vertex id
of new edge

(12) 1 11 16 13 @—p 100 86 96

14 45 50 +—D 7 13

(13) 45 50 50 7 13

pointer to new edge

Figure 8. Adjacency lists linked to new edge array lists of fixed sizes.

Part. x

Part. y

NewEdgeLists

Figure 9. NewEdgeLists data structure to refer to the newly
computed edge lists of each loaded source vertex.

4. Evaluation Plan

In this section, we outline our plan for evaluating GraphDTC.
We expect to perform the deployment required to fulfill these
plans in a workstation supplanted with an Intel i5-4570 Pro-
cessor, and 8GB of RAM.

The plan will be primarily driven by three objectives: (1)
investigate the performance of GraphDTC when processing
very large graphs (of the order of a billion vertices) (Sub-
section[4.T), (2) implement DTC with an existing graph pro-
cessing system GraphChi [8] and compare its results with
ours (Subsection @), and finally (3) obtain the level of im-
provement that can be obtained when GraphDTC is used to
leverage existing program analysis tools in terms of the re-
duction in false alarm rates (Subsection [4.3).

Based on the outcomes of our evaluation, we shall also
intend to locate components of our system that are amenable
for optimizations.

4.1 Performance with Large Graphs

We look to stress test our system with existing large graphs:
the Yahoo Web Graph (6,636,600,779 edges, 67GB disk
storage size) and the Twitter Social Graph (1,468,365,182
edges, 25GB disk storage size). In practice, these graphs
are not the type of graphs that our system is meant to deal
with. In fact, our system targets program graphs, which are
expected to be large but much smaller than these graphs.
Nevertheless, as our system is agnostic of the application
domain of the graphs, doing these tests allows us to see how
the system handles the pressure of performing computations
on massive graphs. In addition, we expect these graphs to
have varying structures. Therefore, processing them with our
system allows us to verify more corner cases, and thus gain
more confidence in our system’s correctness.

The only configuration parameter we shall need to change
in our system for running it on the aforementioned graphs
is to ignore edge labels, i.e. the grammar, and thus only
compute basic transitive closure.

4.2 Comparison with GraphChi

We intend to perform the DTC computation using a pop-
ular graph processing system, GraphChi [8] and compare
GraphDTC'’s performance with GraphChi’s.

Most distributed/parallel graph processing systems like
Pregel [13], Apache Giraph [1], GraphLab [11], Kineo-
graph [4], and also GraphChi, are built on the vertex centric
model, where the user adopts the think-like-a-vertex (TLV)
approach to write applications on the system. Although this
approach has been useful for writing algorithms involving
propagation of vertex values (e.g. page-rank algorithm),
we believe such an approach will increase the complexity
and difficulty for writing applications for DTC computation.
In particular, the edge matching process, which is easily
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Figure 10. Multi-threaded edge computation design.
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Figure 13. Scheduler design for loading two partitions.

achievable using the EPC model (shown in 1)), would be
cumbersome to write using TLV. We also expect it to incur a
significant performance overhead on GraphChi.

4.3 Leveraging Current Program Analysis Tools

Towards leveraging program analysis tools we shall primar-
ily target Coccinelle [14]. Coccinelle is a program matching
and transformation tool that has been used to find faults in
the kernel, drivers, and file systems of Linux. Our goal will
be to increase the number of revealed true faults, and de-
crease the number of revealed false alarms, in Coccinelle. In
order to do that, we shall first generate a call graph of Linux
2.6’s kernel using LLVM [9]. Next, we plan to transform the
graph to the prescribed input format of GraphDTC and per-
form the DTC operation on it. The resultant graph will carry
more precise information, such as calling-context informa-
tion, which we believe can benefit Coccinelle.

5. Conclusion

In this technical report, we have presented a graph process-
ing system, GraphDTC, that can efficiently compute dy-
namic transitive closure (DTC) on program graphs of large
complex systems, using a single machine. Consequently, the
system can benefit static program analysis tools, that are to-
day extensively used for revealing various diagnostic infor-
mation of software programs. The novelty of GraphDTC lies
in the fact that it provides a systems solution to the precision-
efficiency bottleneck of software analysis, by addressing a

fundamental problem in programming language design, the
CFL-reachability problem. The technical report also elabo-
rates upon an evaluation plan for the system.
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