
Instant Clone Finder: Detecting Clones During Software
Development

Vaibhav Saini, Hitesh Sajnani, Jaewoo Kim, Aftab Hussain and Cristina Lopes
Dept. of Information and Computer Science, University of California

Irvine, CA, USA
vpsaini@uci.edu, hsajnani@uci.edu, jaewoo@uci.edu, aftabh@uci.edu, lopes@uci.edu

ABSTRACT
Code clone detection has been an active area of research
over the past few years. Due to various maintainance impli-
cations, it is perceived to be equally important in practice.
Although many advanced techniques are proposed to detect
clones, there are very few tools that are readily available for
use. Moreover, most of the tools function in a batch mode,
and are not integrated with the development environment,
making them less suitable for the use of developers.

In this paper, we describe InstaCF, an index-based code
clone detection tool that detects inter and intra project clones
in real time during the software development process. The
tool is also packaged as an Eclipse plugin that integrates
seamlessly with it. The tool is token based and has the
capability to detect Type 1, Type 2 and Type 3 clones.

We posit that the tool has a potential to increase develop-
ers’ awareness about the presence of clones in their projects,
enabling them to take appropriate clone management ac-
tions.

1. INTRODUCTION
Software developers create duplicate code, often referred

to as code clones, both deliberately (intentional clones) and
accidentally (unintentional clones) [3, 17, 18, 19, 5]. In-
tentional cloning is done for reasons like quick prototyping,
performance gain, and separation of concerns [18] . Un-
intentional clones, however, get created by accidents when
developers are unaware of a similar pieces of code in their
software [1].

It has been noted in both research and practice that clones
lead to maintenance issues. For example, modifications made
in one piece of code may need to be propogated to its clone
siblings, adding to the maintenance cost [10]. The cost may
further increase if developers are not aware of the existence
of the clone siblings, leading to inconsistent changes [4, 13,
14, 15, 29, 22, 27]. Moreover, studies have found that cloning
may lead to the replication of bug patters in the system [32,
27, 7].

Despite the negative aspects being well recognized, cloning
seems to be a prevalent practice in software engineering. In
general a large software consists of 10-15 % of cloned code [3].
As such, researchers seem to have acknowledged the fact that
clones in software are unavoidable and should be seen as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

part of the development activity [20, 23, 27].
More recently, we conducted a preliminary survey to as-

sess developers’ practices of code cloning. We gathered re-
sponses from 72 developers, most of whom had several years
of industrial experience (see Figure 1. In summary, we found
54/72 developers actively search for code before any coding
task, thus increasing the likelihood of creating a clone (see
Figure 2). Moreover, 69/72 developers copy the code found.
We also asked if they wanted a feature in the IDE to high-
light similar pieces of code in their codebase? To that, 65/72
responded ”Yes”. Although, this analysis is not exhaustive,
it provides an idea of how persive the practice of code cloning
has become in practice. Moreover, recent studies have shown
that cloning is not as bad as earlier thought to be [28, 21,
32], generating enough motivation for researchers to look
into compensative clone management techniques [34, 12, 6,
33] over clone removal. For each of these clone management
techniques to work, discovery of clones (clone detection) is
an important first step. Though a lot of work has already
been done in this area [2, 9, 16, 24, 25, 17, 27, 30, 12],
not much work is done to integrate clone management as a
part of development process. To this end, Lague et al. [26]
conducted a case study to assess the impact of integrating
clone detection with the development process as a preventive
control for maintainenance issues. They analyzed 89 million
lines of code and found several opportunities where the inte-
gration of automated clone detection with the development
process could have helped.

As a result, although many tools have been developed to
automatically detect clones adoption of these tools during
software development still faces many challenges:

(i) Most of the clone detection tools in SE research are cre-
ated as a prototype to demonstrate a novel clone detection
technique. Thus leaving little motivation for researchers to
package them for distribution. Due to lack of this effort, the
overhead incurred in setting up these tools, and configuring
the right envirornment turns many developers away.

(ii) It is worth nothing that there are few tools that are
well documented and readily available for use [11, 30, 17],
however, these tools are not designed to be integrated as
a part of the development process. They are mostly stand
alone softwares, designed for batch processing of sofwares.
For example, a typical workflow for these tools is a developer
points them to the code base, run the tool as a separate pro-
cess, wait for the tool to produce results, and then manually
mine the clone to link them back to the code base. While
such tools might be useful to perform certain analysis of the
code base (e.g., # of clones in the system), this workflow
is not suited for detecting clones during development. We
posit that the context switch from the regular development
task to detect clones might dull developer’s interest in using
a tool at all.
Our contribution. To address the above limitations, we
developed InstaCF, an eclipse plug-in that instantaneously
reports intra & inter project method level clones in Java
software. InstaCF detects the method the developer is cur-

2015

rently working on, then pro-actively reports the clones of the
method in a non-obtrusive manner. The tool is based on an
index based clone detection technique that we proposed ear-
lier [31].

Figure 1: Industrial Experience of Survey Partici-
pants

Figure 2: Participants’ Responses

2. THE INSTACF TOOL
2.1 Plug-in Overview

The eclipse based plug-in is built on top of the index-based
token code clone detection proposed in [31]. It works on the
principle of computing similarity between code blocks using
a user specified simiarlity function and simiarlity threshold.

InstaCF can be installed easily by following 3 steps in
given order: (i) Open Eclipse and click Install New Software
in Help menu; (ii) Click Add. Then, in the Add Reposi-
tory window, enter the name InstaCF, and in the location
field enter the url http://mondego.ics.uci.edu/projects/
clonedetection/tool/latest; and finally, (iii) follow the
steps given in eclipse wizard to install the plug-in.

After the plug-in is installed, it gets activated when eclipse
launches. The first time, it traverses all open projects in
eclipse’s workspace and creates indexes. Simultaneously, the
plug-in identifies the method or code block, a developer is
currently working on the editor. It then computes the simi-
larity score of each code block with the current method using
the pre-computed indexes. All the code blocks which bear
similarity score greater than the user specified threshold are
reported as clones. The entire process is real time with
no observable lag even for workspace having more millions
LOC. For example, we noticed average (over 500 queries)
clone detection time to be 51.20 ms1 on an index of 36
projects consisting of 1.92 million LOC. Moreover the in-
dex creation is reasonably fast (e.g., it took 10.66 minutes
for the above code base). and incremental - only updating
existing indexes with the addition of new code blocks in the
code base.

1Time observed on a regular laptop running OSX with Intel
i7, 2.3 Ghz processor and 16 GB DDR3 Ram.

2.2 Architecture
InstaCF has five modules as shown in Figure 3. In the

following, we discuss each of the modules.

Figure 3: Tool Architecture

2.2.1 Manager: controls interaction between differ-
ent modules

Manager module acts as a controller in our plug-in. Its
role is to delegate jobs like create indexes, update indexes,
search clones, and report clones to other modules, and also
to mediate the data flow among them. It also, listens to the
change and selection events generated by the editor. On
detection of such events, it performs action such as update
indexes or search clones.

2.2.2 Parser: parses projects and creates input for
the indexer

Job of the traverser is to generate input files for the In-
dexer Module. On activation of the plug-in, Manager dele-
gates the job of creating indexes to the Parser Module, which
creates parsed files using Eclipse’s JDT (Java Development
Toolkit).

2.2.3 Indexer: creates inverted and forward indexes
of code blocks

Indexer uses the parsed files created by the Parser Mod-
ule is used as an input to the Indexer Module, which then
creates a partial inverted index and a forward inverted in-
dex for each of the open projects in the eclipse worksapce.
The partial inverted index is used to search the candidate
clones whereas the forward index is used to verify if the can-
didates are clones or not. The more details on the creation
and working of these indexes can be found in our previous
study [31].

2.2.4 Searcher: searches clones in the indexes
The job of the Searcher module is to search clones of

a given method. Manager detects the current method on
which the developer is working and then creates a query
block of the current method. Searcher uses the query block
as an input and detect its clones using the indexes. It
produces clone output file containing meta information of
clones.

2.2.5 Reporter: reports detected clones
After the clone detector module detects the clones of the

current method, Manager asks the Reporter module to per-
form two tasks i) create a marker on the editor (where the
line numbers are written). This marker signifies the pres-
ence of clones of the current method in the project; and ii)
read the clone output file created by Searcher create a view

part to display the list of clone methods in the Eclipse. The
user can quickly navigate to the clone methods by clicking
any item in this list of clone methods.

2.3 Plug-in User Interface
The Eclipse Java editor acts as the primary user interface

for InstaCF. The plug-in is designed to have a minimalis-
tic design in order to minimize the cognitive burden on the
user for using and understanding a new utility in the envi-
ronment. Figure 4 shows a red colored marker (annotated
inside the top blue rectangular region in the eclipse’s ed-
itor) signifying that the InstaCF has found clones of the
method, on which the developer is currently working. A
marker can have one out of three colors: a) Red - signifies
there are more than 10 clones of the current method in the
project; b) Yellow - signifies there are five to 10 clones and
c) Green - signifies the existence of less than five clones. On
hovering the mouse pointer above the marker would show
a view-part (annotated inside the bottom blue rectangular
region), listing all the clones of the current method. Devel-
opers can navigate to the clone methods by simply clicking
on the method names in the list.

Figure 4: Screenshot of eclipse, displaying that the
plug-in has detected clones.

3. RELATED WORK
In this section we present related tools that are available

for clone detection. We first compare our tool with the tools
which are integrated with the development environment and
later we compare our tool with the stand alone tools.
Tools integrated with Development Environment.
Patricia Jablonski’s proposed CnP, a tool to detect copy-
and-paste clones in the IDE [12]. CnP establishes links
between the original and the pasted clones and uses their
content information later on for error detection and other
purposes. Unlike our tool, CnP doesn’t use a clone detector
to detect clones and hence is not capable of finding legacy
clones. Moreover, CnP cannot find accidental clones.

CP-Miner detects copy-paste errors in the context of tra-
ditional clone detection [27]. It uses a token-based approach

with data mining and a gap constraint. We are using an
index-based token comparison technique, which falls under
the information retrieval approach. Also, unlike our tool,
CP-Miner is not available freely and one needs to buy a
license to use it.

CloneTracker, an eclipse plug-in is a tool that keeps track
of the evolution of clones [8]. For it’s input, it relies on the
output of a clone detector tool, that needs to be run before
hand to generate all the clones in a system. CloneTracker,
unlike InstaCF, does not detects the clones in real time.
Stand Alone Tools. There are some stand alone tools,
namely Dup [3], iClones [11], CCFinder [17], and Nicad [30]
that do batch processing to detect clones, but these tools are
not designed to be integrated with the development process.
Nicad, however, can be integrated to an IDE but being a
batch processing tool it lacks the capability to detect clones
on the fly. Baxter et al. created an AST based clone detec-
tion tool [5]. It detects clones by finding identical subtrees.
They used the tool to demonstrate the use of AST to detect
clones and did not release the tool. Moreover, it is a stand
alone tool that does batch processing and they did not show
if it can be integrated to a development environment.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented InstaCF, an easy-to-use, free,

and well packaged clone detection plug-in for the Eclipse
IDE that can detect clones on the fly. The tool pro-actively
finds method level clones and reports them in a non-obtrusive
manner. The motivation behind building this tool was the
fact that though a lot of research has been done on clone de-
tection and a large number of tools have been released by re-
searchers, not many clone detection tools are integrated with
the development process. The existing tools suffer from one
or more of the following limitations: (i) they are not pack-
aged well for distribution; (ii) they stand alone software and
detect clones in batches; and (iii) they are not available free
of cost. A pre-assessment survey confirmed the demand of
such a tool among software developers. Currently, our tool
can successfully and pro-actively detect method level clones
within all the open projects in Eclipse, for code written in
Java.

InstaCF is based on an efficient index based approach that
could find clones on the fly. The next step would be to
improve the tool’s index generation phase. Currently the
indexes are created sequential; since index generation could
take a considerable time particularly for large projects, it
is important these executions are implemented in a multi-
threaded fashion such that the work flow of the developer is
not interrupted while the index generation takes place.

5. TOOL ARTIFACTS
Link to the screencast that shows the tool in action: http:

//mondego.ics.uci.edu/projects/clonedetection/tool/
demo

Link to install the Eclipse plug-in: http://mondego.ics.
uci.edu/projects/clonedetection/tool/latest

Link to the source of underlying code clone detector: http:
//mondego.ics.uci.edu/projects/clonedetection/tool/
source

6. REFERENCES
[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey.

Cloning by accident: an empirical study of source code
cloning across software systems. In Empirical Software
Engineering, 2005. 2005 International Symposium on,
pages 10–pp. IEEE, 2005.

[2] B. Baker. A program for identifying duplicated code.
In Computing Science and Statistics, pages 24–49,
1992.

[3] B. S. Baker. On finding duplication and
near-duplication in large software systems. In Reverse
Engineering, 1995., Proceedings of 2nd Working
Conference on, pages 86–95. IEEE, 1995.

[4] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells
in software evolution. In Software Maintenance, 2007.
ICSM 2007. IEEE International Conference on, pages
24–33. IEEE, 2007.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In Software Maintenance, 1998. Proceedings.,
International Conference on, pages 368–377. IEEE,
1998.

[6] A. Begel and R. DeLine. Codebook: Social networking
over code. In Software Engineering-Companion
Volume, 2009. ICSE-Companion 2009. 31st
International Conference on, pages 263–266. IEEE,
2009.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors,
volume 35. ACM, 2001.

[8] E. Duala-Ekoko and M. P. Robillard. Clonetracker:
tool support for code clone management. In
Proceedings of the 30th international conference on
Software engineering, pages 843–846. ACM, 2008.

[9] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proceedings of the IEEE International Conference
on Software Maintenance, pages 109–118. IEEE
Computer Society, 1999.

[10] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger.
Relation of code clones and change couplings. In
Fundamental Approaches to Software Engineering,
pages 411–425. Springer, 2006.

[11] N. Gode and R. Koschke. Incremental clone detection.
In Software Maintenance and Reengineering, 2009.
CSMR’09. 13th European Conference on, pages
219–228. IEEE, 2009.

[12] D. Hou, P. Jablonski, and F. Jacob. Cnp: Towards an
environment for the proactive management of
copy-and-paste programming. In Program
Comprehension, 2009. ICPC’09. IEEE 17th
International Conference on, pages 238–242. IEEE,
2009.

[13] P. Jablonski and D. Hou. Cren: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the ide. In Proceedings of the 2007
OOPSLA workshop on eclipse technology eXchange,
pages 16–20. ACM, 2007.

[14] P. Jablonski and D. Hou. Renaming parts of identifiers
consistently within code clones. In Program
Comprehension (ICPC), 2010 IEEE 18th
International Conference on, pages 38–39. IEEE, 2010.

[15] L. Jiang, Z. Su, and E. Chiu. Context-based detection
of clone-related bugs. In Proceedings of the the 6th
joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 55–64.
ACM, 2007.

[16] J. H. Johnson. Identifying redundancy in source code
using fingerprints. In Proceedings of the 1993
conference of the Centre for Advanced Studies on
Collaborative research and Software Engineering,
pages 171–183. IBM Press, 1993.

[17] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. Software
Engineering, IEEE Transactions on, 28(7):654–670,
2002.

[18] C. Kapser and M. W. Godfrey. Toward a taxonomy of
clones in source code: A case study. In ELISA

workshop, page 67, 2003.
[19] C. Kapser and M. W. Godfrey. Aiding comprehension

of cloning through categorization. In Software
Evolution, 2004. Proceedings. 7th International
Workshop on Principles of, pages 85–94. IEEE, 2004.

[20] C. J. Kapser and M. W. Godfrey. Supporting the
analysis of clones in software systems. Journal of
Software Maintenance and Evolution: Research and
Practice, 18(2):61–82, 2006.

[21] C. J. Kapser and M. W. Godfrey. âĂIJcloning

considered harmfulâĂİ considered harmful: patterns
of cloning in software. Empirical Software
Engineering, 13(6):645–692, 2008.

[22] R. Kerr and W. Stuerzlinger. Context-sensitive cut,
copy, and paste. In Proceedings of the 2008 C 3 S 2 E
conference, pages 159–166. ACM, 2008.

[23] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in oopl. In Empirical Software Engineering,
2004. ISESE’04. Proceedings. 2004 International
Symposium on, pages 83–92. IEEE, 2004.

[24] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In SAS ’01
Proceedings of the 8th International Symposium on
Static Analysis, pages 40–56. ACM, 2001.

[25] J. Krinke. Identifying similar code with program
dependence graphs. In Proceedings of the Eighth
Working Conference on Reverse Engineering
(WCRE’01), pages 301–309. IEEE Computer Society,
2001.

[26] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Software Maintenance, 1997. Proceedings.,
International Conference on, pages 314–321. IEEE,
1997.

[27] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A
tool for finding copy-paste and related bugs in
operating system code. In OSDI, volume 4, pages
289–302, 2004.

[28] F. Rahman, C. Bird, and P. Devanbu. Clones: what is
that smell? Empirical Software Engineering,
17(4-5):503–530, 2012.

[29] C. K. Roy and J. R. Cordy. A survey on software
clone detection research. Technical report, Technical

Report 541, QueenâĂŹs University at Kingston, 2007.
[30] C. K. Roy and J. R. Cordy. Nicad: Accurate detection

of near-miss intentional clones using flexible
pretty-printing and code normalization. In Program
Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, pages 172–181. IEEE,
2008.

[31] H. Sajnani, V. Saini, and C. Lopes. A parallel and
efficient approach to large scale clone detection.
Journal of Software: Evolution and Process, pages
n/a–n/a, 2015.

[32] H. Sajnani, V. Saini, and C. V. Lopes. A comparative
study of bug patterns in java cloned and non-cloned
code. In Source Code Analysis and Manipulation
(SCAM), 2014 IEEE 14th International Working
Conference on, pages 21–30. IEEE, 2014.

[33] N. E. Schwarz, E. Wernli, and A. Kuhn. Hot clones,
maintaining a link between software clones across
repositories. In Proceedings of the 4th International
Workshop on Software Clones, pages 81–82. ACM,
2010.

[34] M. Toomim, A. Begel, and S. Graham. Managing
duplicated code with linked editing. In IEEE
Symposium on Visual Languages and Human Centric
Computing, pages 173–180, 2004.

