
Euro Truck

Simulator 2

Reverse Engineered

Requirements

Document

Omar Asadi

Aftab Hussain

University of California, Irvine

2

TABLE OF CONTENTS

3 Overview

3
3
4

Stakeholders
Marketing and Investment Stakeholders
Game Construction Stakeholders

4 Case Study

5
6
8

10

Models
Goal Models
System Vision
Non-Functional Requirements

11
11
11

Description of Techniques Used
i* Framework
Rich Picture Method

12 Description of Tool Used

12 Conclusion

13 References

3

1. Overview

In this work we reverse-engineer the elaborate requirements of the game, Euro Truck
Simulator 2 (ETS2), available at [1]. ETS2 was released by SCS Software, on October 2012. The
fundamental gameplay constitutes of driving trucks around depicted European cities for
delivering cargo at various locations. It keeps a track record of the player’s completed tasks and
offers career progression for the player in terms of income. The game has been widely popular1,
with high rates of downloads and is available for purchase at the multi-player online gaming
platform, Steam2.

Reverse engineering the requirements document of a given system is a challenging task
particularly for large legacy systems which are deployed in a distributed manner. The main
difficulty this task poses is in capturing the complexities of all components of the system in a
coherent and non-conflicting fashion. A way to address this difficulty is to build the
requirements models of the system in an incremental way [3], an approach we tried to follow
while doing the same for ETS2.

We now present the organization of our report, which also reflects the work flow of this
reverse engineering project: In Section 2, we present a description of all the relevant
stakeholders of the game. In Section 3, we present a case study of the game with respect to its
gameplay. In Section 4, we present the models of the system. In Sections 5 and 6, we give a
description of the techniques and tools used, respectively. We conclude the report in Section
7, mentioning challenges addressed during the work.

2. Stakeholders

We have segregated the stakeholders of ETS2 into two spectrums: Marketing and
Investment (Section 2.1) and Game Construction (Section 2.2). While the former enlists all
stakeholders that relates to fulfilling the business requirements of the game (which are relevant
towards the development of any software product), the latter comprises of those that are
connected to the actual development of the game. It should be mentioned that this
categorization should not be considered as a strict separation of concerns as some
stakeholders, e.g. executives, will have roles to play in both the construction and the marketing
and investment of the game. This segregation is solely to provide a grouping of the stakeholders
as per the perceived characteristic of the majority of each stakeholder’s responsibilities.

2.1. Marketing and Investment Stakeholders

Executives. They are the chief-category officers of the game vendor company who are the
key drivers of the project in terms of providing the vision, approving resource utilization,
marketing the product, and maintaining investor and shareholder relations.

Investors. The investors allocate capital to a potentially profitable project. They provide the
crucial funds that may be allocated appropriately for the development of the game.

1 The game has sold over 500,000 units as of April 2014, http://en.wikipedia.org/wiki/Euro_Truck_Simulator_2
2 http://store.steampowered.com/

4

Shareholders. The shareholders are the owners of the company and thus the profits of the
vendor company has a direct impact on their interests. They may have voting rights over
membership in the board of directors, and thus it is important that any new decision to go-
ahead in the development of the game, and the outcome of the sales of the game plays positively
to the shareholders.

PR Team. They are responsible for marketing the product, branding, media relations,
creating and maintaining awareness of the Euro Truck product line, communicating with
advertising agencies, and receiving customer feedback via different media for the purpose of
shaping the story of the product.

2.2. Game Construction Stakeholders

Product Managers. Assign project to development teams, monitor the work flow of the
project, set milestones, and meet software architects in order to get their progress feedback and
address their resource concerns.

Software Architects. These are people who will generally act as team leads of different
components of the project: for example, user interface component, networking functionalities,
gameplay logic. Each team will generally comprise of 3-5 developers.

QA Team. The Quality Assurance Team’s main focus is to verify and validate the
development of the different teams of the project, iteratively. Their roles include preparation
of test data for each phase of the project, testing, etc.

Developers. They are the core workers of the project, who are responsible for coding and
implementation of the entire constructs of the game. They will work in different components
of the project under the supervision of a software architect.

UX Designers. They provide the general layout of the game, the designs of the menu pages,
etc.

CAD Engineers. ETS2 being a simulation game would require sufficient realism in the
designs of the trucks and cities. CAD engineers would fill in that role by creating 3D
visualizations of those real-world entities.

Legal Experts. Their job would be to ensure no copyrights/governmental laws are violated
during the gathering real-life information (city plans, city landscape, truck designs, etc.) which
would be necessary to develop various entities of the game, check for any preexisting patents
belonging to other parties which constitute ETS2’s ideas, and to mediate the exchange of rights
when necessary.

3. Case Study

This interactive real-time software allows the player to simulate the experience of being a
truck driver for a European trucking company. The system goes into incredible detail, including
but not limited to:

1. The complexity of the driving controls

5

a. The number of driving functions under the player’s control
i. Automatic transmission handles the gear shifts for the player
ii. Manual transmission requires the player to shift gears at the appropriate

time in order to optimize speed

b. The type of player input (keyboard, mouse and keyboard, or steering wheel
controller)
i. Keyboard only is the simplest: up, down, left, right to correspond to

forward, brakes/reverse, turn wheels left, and turn wheels right,
respectively

ii. Mouse and keyboard uses the keyboard for acceleration/brakes and the
mouse for direction

iii. Steering wheel offers the most authentic driving experience

2. The city in which to drive

a. Choose from cities all over Europe
b. Each city changes both the scenery and the layout of the roads

3. The types of trucking jobs to accept and complete

a. Short drives
b. Long drives
c. Timed drives

4. The difficulty of completing the trucking jobs

a. Combination of the length of the trip and the time until the deadline

5. Damage taken by the truck or cargo

a. The truck must be repaired in order to function properly
b. Damage to cargo is permanent and can reduce the reward or even cause the player

to fail a job
c. Time taken to repair the truck will delay the successful completion of the job,

potentially reducing the payout

Upon completing jobs, the player can advance their career and their trucking company to the
point of international supremacy.

4. Models

In this section, we present the models that were derived for ETS2. We present the goal
model (4.1), the system vision (4.2), and finally the non-functional requirements hierarchy (4.3).

6

4.1. Goal Models

The goal-oriented models illustrate the various objectives of the game. For building the goal
models we have used the i* framework (described in Section 5.1). A goal-oriented model helps
in setting the foundation for requirements elicitation, driving the design of the product, and
resolving conflicts [7]. Using the i* framework, we derived two goal models of ETS2, the Strategic
Dependency Model (SD), depicted in Figure 1, and the Strategic Rationale Model (SR), depicted
in Figure 2.

The SD model portrays the interactions between the various agents of ETS2, in the context
of ETS2’s gameplay. The only real/tangible agents here are the truck driver (the player) and the
gameplay simulator, the primary agent/actor being the player. The player has task, resource,
and goal dependencies with fictitious agents such as the company, the driver’s company’s
manager, truck dealers, and employees (other truck drivers). An example of a task dependency
is that of job selection, where the driver selects a job from a list of offers from different fictitious
companies. The truck driver receiving salary is an example of a resource dependency. The
primary goal in this scenario is that of driving the truck, which is the main action of playing the
actual simulator. A softgoal which may be associated with playing the simulator is that of
changing the settings of gameplay. Since this is not an essential feature in order to play the
game, we have classified it as a soft goal in the SD model. Another softgoal that was portrayed
in the model is that of getting a job. This is an added feature as the game offers the player to
start playing with the simulator right away, with preset default truck and location selections.
From the SD model, we can thus understand the intentional relationships between the different
agents.

Figure 1: Strategic Dependency Model of ETS2.

7

Figure 2: Strategic Rationale Model of ETS2

8

In the SR model we go into greater depth with regard to exploring the intentions of the
agents, which is the fundamental concern of the i* approach. As was mentioned earlier, in
principle, there is only one actor in ETS2 with regard to ETS2’s gameplay, which is the player.
Therefore, in the SR model we have elaborated on the tasks of the player, with a focus on
intention. In addition, we have done the same for the only other tangible actor within ETS2’s
gameplay, which is the simulator. Although, two more actors were included, the “recruitment
agency” and the “truck dealers”, their sole purpose was to show breadth in the capabilities of
the player.

As can be seen, SR emphasizes on soft goals and how certain tasks can affect the
achievement of those goals. All the soft goals have been set with respect to the expectations of
the player. Consider the task of selecting a job; this task has three further sub-tasks relating to
company, job location, and pay rate. This clearly contributes positively to the realism of the
game, which is a desired softgoal of the game. It also adds positively to the account balance of
the player within the game environment, as it allows the player to earn. However, this task
negatively impacts the subgoal of “quick start to gameplay”, as it could cause a delay in actually
playing the game. This relation should remind developers and designers of making the job
selection process as effortless and seamless as possible.

Let us consider another example of a task “start game”; this task has a direct goal dependency
on the goal “drive truck” which exists within the boundary of the GamePlay Simulator. This goal
has a couple of subgoals: “smooth graphics frame transition” and “quality resolution and detail”.
These subgoals can be affected positively/negatively by changing the graphics settings. What
has not been shown in the SR model in this regard is that these subgoals have an inverse
relationship. Improving one would adversely impact the other. Thus another subgoal, which
could be derived from these two goals is that of finding an optimal setting of the two.

Finally let us consider the task of “get involved in accidents”, which is shown to be
subdivided into two more tasks of incurring fines and getting damage notifications. While
incurring fines negatively affects the subgoals “account balance” and “ease of play”, it
contributes positively to the realism of gameplay. Getting damage notifications is shown to
positively contribute to the ease of play, as it instantaneously tells the user about the current
state of the truck. However, such a feature generally do not exist in real-life truck notification
systems and hence it may negatively contribute to the realism of the game.

In addition to further exploring the impact on softgoals in the SR model, we have also
adopted an expansive approach for analyzing soft goals in the SR model by decomposing them
into smaller subtasks. For instance, “Change GamePlay Settings” is a soft goal in the SD model,
but is a sub-task of the goal, “Drive Truck” in the SR model. This was done because it was
necessary to explore the softgoals in the SD model in greater detail, which forced the expansion
of the sub-goal into a set of tasks.

4.2. System Vision

This model presents the broad vision of the overall system that we believe were agreed
upon by all stakeholders of the system based upon our investigation of the game. We used the
Rich Picture Method (explained in Section 5.2) to construct the System Vision.

Figure 3, shows the system vision of the game. As can be seen, we have constructed a rich
picture with the game construction perspective. In other words, we have shown all elements,

9

Figure 3: System Vision of ETS2

10

flows, and stakeholders that are likely to be involved in the development of the game, at a high
level of abstraction.

We have grouped the model’s entities using 2 structure boundaries: the game vendor
company and the sub-structure, the core development team. Further structure categorizations
were not made in order to not clutter the diagram and also to avoid straying from the main
theme of the model, which is game construction. Broken boundaries represent sub-teams
within the core development team, and call-out symbols have been used to represent the
concerns of individual stakeholders. The arrows represent the flow of information during the
construction of the game, and thus illustrate the process.

The main game construction process starts with the executives, who set the goals in
collaboration with the game story thinkers, while adhering as much as possible to the demands
of the customers obtained from market research data provided by product managers. Based on
the deliberations in this initial phase of determining of how the story is going to be, appropriate
resources (possibly copyrighted) are elicited. These resources include truck designs and city
designs. The process is overseen by a team of legal experts to help navigate the legal boundaries
of sharing copyrighted material. The game story ideas (in the form of detailed specifications)
and resources are then shared with the core development team, whose milestones are set by
product managers in coordination with softw are architects. The outcomes of the development
teams are iteratively tested by the Quality Assurance Team, who perform their spectrum of
testing techniques based on test cases generated from the game specifications.

4.3. Non-Functional Requirements

The non-functional requirements of ETS2 include the ability to distribute the game via the
Steam platform, the expectation that the game runs smoothly on a wide variety of different
hardware platforms, and the enjoyment factor of the game by the customers (players).

The first non-functional requirement, distribution via Steam, presents a challenge that has
almost nothing to do with the software itself. The Steam platform provides many developers
and publishers the ability to reach a wide variety of gamers while also allowing gamers to
consolidate and organize their purchased games in one location. This integration with the
Steam platform allows the developers to almost completely offload distribution concerns to
Valve Software (developers of Steam). Integrating with Steam means Valve will be the one
worrying about server load and bandwidth, not SCS Software. All SCS Software needs to worry
about is the interface with Steam to allow this distribution to take place.

The second non-functional requirement, hardware-independence, presents a unique
challenge for the developers. Real-time interactive software for general-purpose PCs comes
packaged as only software and required libraries and is designed to run on any machine
meeting the developer-determined minimum system requirements. The alternative is software
for gaming consoles like the XBox One and the PlayStation 4 where the hardware specification
is known in advance and the software can be optimized for that specific combination of
hardware. Gamers with general-purpose PCs typically have widely varying hardware, but they
all expect the software to perform smoothly on their specific hardware setups. This
requirement forces SCS Software to implement various levels of performance for their
software by modifying graphical settings. The most common areas of variability are texture

11

detail (affects graphics card RAM usage), anti-aliasing level (affects graphics card load), and
shadow detail (affects graphics card load). By implementing many different levels of
performance in each of these areas, the developers can ensure that any machine that meets the
minimum system requirements (usually defined to passably run the software at the absolute
lowest graphical settings) can smoothly run the software.

The third non-functional requirement, enjoyability, is potentially the most challenging
requirement to meet, since it is the most subjective. Each of the previous two non-functional
requirements can be accomplished by checking off items in a list. This requirement depends
entirely on the customers. The developers must take care that they perform acceptance testing
with a representative focus group before releasing the game to the general public. Even the
best-intentioned game ideas can result in critical and commercial disasters, such as Titus
Software’s Superman for the Nintendo 64 console3. The concept seemed great at first: allow the
player to fly around Metropolis as Superman, exhibiting incredible, heroic feats. The
implementation, however, fell flat on its face. Many critics cited the unresponsive controls as a
major downfall of the game, among other things. ETS2, on the other hand, appears to have met
this requirement due to the above-average reviews and a Sim of the Year award in 20124.

Description of Techniques used

5.1. i* Framework

We used this framework to construct the goal model of ETS2. The i* framework is a
modeling framework geared towards the early phase of requirements engineering [1] that
adopts an agent/actor-oriented approach. In particular, it helps in mapping the dependencies
among the actors in a system with respect to the organizational context and also the rationales
behind those dependencies. It provides two models for this purpose, a strategic dependency
(SD) model and a strategic rationale (SR) model. While the SD model mainly focusses on the
dependencies, the SR model elaborates further on the concerns/interests of the stakeholders.
The SR model thus reveals more about the “intentional constructs” of the SD model, i.e. the
goals, tasks, and softgoals. Elaborate details of the technique could be found in [4], [5].

5.2. Rich Picture Method

The rich picture method comprises of the construction of a rich picture which captures the
rationales of the work context and shows how the design can be affected [6]. The three major
components of a rich picture are structure, process, and concerns. Structure refers to the more
concrete and immutable aspects of a work context, for instance organizational hierarchy, which
could change only gradually. Process refers to the various flows among the various entities
within the system and its environment. Finally concerns, comprise of the possible individual
issues of the stakeholders of the system.

3 http://en.wikipedia.org/wiki/Superman_(1999_video_game)
4 http://en.wikipedia.org/wiki/Euro_Truck_Simulator_2

12

6. Description of Tool Used

In this section, we describe MindMaple5, the tool that was used for generating the models’
illustrations presented in this report.

MindMaple is a mind-mapping software that helps in visually organizing thoughts in the
form of maps. With its rich set of drawing features, like trees, relationship boundaries, etc, it is
possible to intuitively convey information through the diagrams. In addition, it provides short-
cut keys for drawing specific components of the model, such as call-out symbols, and
relationship arrows, which helped to draw the diagrams easily and efficiently. The software is
available for all major OS platforms, including Windows, Linux and Mac. Figure 4, shows a
screenshot of MindMaple Lite v1.65.

Figure 4: MindMaple

7. Conclusion

In this report, we have presented the requirements of ETS2 obtained via reverse engineering
the requirements. We first described the various stakeholders of ETS2 by categorizing them
into two groups based on functional perspectives. Then we derived and elaborated upon the
goal, system vision, and non-functional requirements models of the game.

As was mentioned earlier, reverse engineering requirements documents of any software
system is a lengthy task, which may offset the benefits it provides due to the large effort needed
in building it. Among the main challenges that were faced in conducting this investigation was
to ensure consistency and uniformity among the models. We tried to address this challenge by
iteratively comparing the models during the construction of the models. Another challenge was
in determining the scope of the project, especially when enlisting all possible stakeholders. In
addressing this we followed the philosophy of focusing on interactions, tasks, and
communications of the vendor side as much as possible. For instance, an investor would
consult independent market research agencies for gathering information on the demand of
simulator games like ETS2 before choosing to invest in the project. Since this interaction

5 http://www.mindmaple.com/

13

between the investor and the market research agencies is entirely outside the purview of the
vendor company, we deciding against consider market research agencies as one of the game’s
stakeholders.

References

[1] http://www.eurotrucksimulator2.com/

[2] Eric S. K. Yu. 1997. Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering. In Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE '97). IEEE Computer Society, Washington, DC, USA, 226-.

[3] Reverse engineering requirements,
http://www.blueprintsys.com/back_to_the_future_reverse_engineering_requirements/

[4] Eric Siu-Kwong Yu. 1996. Modelling Strategic Relationships for Process Reengineering.
Ph.D. Dissertation. University of Toronto, Toronto, Ont., Canada, Canada. UMI Order No.
GAXNN-02887 (Canadian dissertation).

[5] Eric S. Yu. 2009. Social Modeling and i*. In Conceptual Modeling: Foundations and
Applications, Alexander T. Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S. Yu (Eds.).
Lecture Notes In Computer Science, Vol. 5600. Springer-Verlag, Berlin, Heidelberg 99-121.
DOI=10.1007/978-3-642-02463-4_7 http://dx.doi.org/10.1007/978-3-642-02463-4_7

[6] Andrew Monk and Steve Howard. 1998. Methods & tools: the rich picture: a tool for
reasoning about work context interactions 5, 2 (March 1998), 21-30.
DOI=10.1145/274430.274434 http://doi.acm.org/10.1145/274430.274434

[7] Eric Yu and John Mylopoulos. "Why Goal-Oriented Requirements Engineering". University
of Toronto.

http://www.blueprintsys.com/back_to_the_future_reverse_engineering_requirements/
http://dx.doi.org/10.1007/978-3-642-02463-4_7
http://doi.acm.org/10.1145/274430.274434
http://www.cs.toronto.edu/pub/eric/REFSQ98.html

