
A Study on Memory Consistency Approaches in Distributed Shared
Memory Systems

Aftab Hussain
Department of Computer Science,

Donald Bren School of Information and Computer Sciences,
University of California, Irvine

aftabh@uci.edu

Abstract

Following the increasing popularity and need of parallel computing, the idea of a distributed shared memory
(DSM) model gained significant attention in the late 1970s, engendering a new area of research. Exam-
ples of some early works in this area include those of Kai Li. The actual implementation of the distributed
shared memory models however suffered from same problems of shared memory models. One such problem
is the memory coherence problem. Because of the distributed nature of DSM, this problem became more
complicated to address than it was originally in the shared memory models. In this paper, we discuss some
approaches that were used to address the memory coherence in the context of systems that have actually
implemented them.

Keywords: shared memory model, message passing, serialization

1. Introduction

The idea of a Distributed Shared Memory (DSM)
system first came between the late 1970s to the mid
1980s. Some of the earliest works in DSM were
presented by [1]. They were seen as the answer
to achieving high scalability in performing parallel
computations, while giving the programmer a uni-
fied view of the memory of the system. In particular,
physical dispersed memories are joined together into
a single virtual address space [2]. The main selling
point of the DSM was that it combined the benefits of
the shared memory model and the distributed mem-
ory model.

The shared memory system was the dominant ar-
chitecture in the 1980s, particularly for small num-
bers of processors (16 or 32) [3]. A shared mem-
ory system is shown in Figure 1. These systems
were also called bus-based multiprocessors or sym-
metric multiprocessors (SMPs). This is because all
processors have the same relationship with the cen-

tralized main memory. For this reason, the shared
memory model is suited to tightly-coupled micropro-
cessor systems, where the processors are generally
identical and controlled by a single operating system.
A modern day example of such a tightly-coupled mi-
croprocessor system is the IBM p690 [4].

Figure 1: A shared memory multiprocessor. [3]

The main advantage of the shared memory system
is that it supports a traditional programming model,

Preprint submitted to Prof. Isaac Scherson for CS230 (Winter 2016) March 11, 2016



where memory is viewed as a single shared address
space. In addition, the shared memory machines had
low communication costs because processors were
able to interact with each other directly through the
bus without the use of a software layer.

However, the shared memory model is difficult to
scale as it depends on the use of a central main mem-
ory. Also, in tightly-coupled microprocessor system,
main memory is accessed by a common bus, which
can carry out signals serially, and which thus limits
the size of the system to only tens of processors [5].

In order to accommodate more processors the log-
ical approach was to adopt a distributed memory
model, where each processor is allocated a sepa-
rate memory module. Also, instead of relying on
a bus, in this model the processors rely on a scal-
able interconnection network to communicate with
each other, as shown in Figure 2. The local memory
acceses do not consume the bandwidth of the net-
work. In today’s distributed memory multiproces-
sor architecture there exists separate multi-core pro-
cessor nodes instead of single-core processor nodes.
The distributed nature of the of this model allows it
to form the foundation of loosely coupled systems.

While the distributed memory model clearly pro-
vided better scalability, programming a communica-
tion model between a large number of non-identical
processors was challenging. In order to overcome
this challenge the DSM approach was proposed: it
physically distributed memory among multiple pro-
cessors (achieving scalability) and while implement-
ing a single shared address space (simplifying the
programming model). The DSM is, therefore, also
known as the shared virtual memory model. An ex-
ample of a DSM is shown in Figure 3.

Prior to the DSM, the approaches that were used
to overcome the programming-model-simplicity and
scalability bottleneck relied on message passing ar-
chitectures. They consist of separate computing
nodes with no shared structure, except the intercon-
nection network [3]. Such architectures have many
limitations.

Message passing systems operate by the use of
user primitives, like send and receive [6]. These
primitives can be used to synchronize parallel pro-
grams. However, this requires the programmer to
know about the times of data transfers. In addi-

tion, these systems have been shown to have diffi-
culties passing complex data structures [6]. For in-
stance, it has been shown that passing a list by send-
ing messages takes significant space and time over-
head [7]. The process involves packing and unpack-
ing of the data structures. A remote-procedure-call
(RPC) based architecture overcomes the problem of
having to know when the data structures are to be
passed. Nevertheless, it still suffers when passing
complex data structures [6].

The main reason behind the above mentioned
drawbacks of message passing and RPC based ap-
proaches is that they both manage multiple address
spaces. The DSM or shared virtual memory unifies
the address space, allowing the processors to work
on a single address space. This obviates the need to
pack and unpack data structures as done in the above
approaches.

Also, DSM simplifies process migration [6]. A
process migration involves the parallel transfer of all
operating system resources (e.g. code and stack) al-
located by the process, which is expensive [8]. In
a multiprocessor environment that relies on a multi-
address space, translating the contents of different
address spaces on the fly easily and efficiently be-
comes challenging. In a DSM system, process mi-
gration can be achieved by just transferring a process
from the queue of one processor to the queue of the
destination processor. This is possible because of the
shared address space provided in a DSM.

The implementation of the DSM, however, is not
straight-forward. The main difficulty is caused by
the problem of memory coherence, in other words,
ensuring that all processors have a consistent view of
the data in the entire system. If the shared data in
the system is not replicated, enforcing memory co-
herence becomes trivial [5]. In such a scenario, the
network can order requests to data, in the order in
which they were made. If a node consists of data that
is shared, it merely needs to perform each request on
the data one at a time. As mentioned in [5], this is
the strictest form of memory consistency.

However, in order to perform parallel computa-
tions in a DSM system, it becomes necessary to repli-
cate data, and thus such protocols would not work. In
this survey, we explore the various approaches that
have been adopted to address memory coherence in

2



Figure 2: A distributed memory multiprocessor [3].

Figure 3: Memory mapping in a distributed shared memory
multiprocessor. [6]

distributed shared memory systems.
The rest of this paper is organized as follows: Sec-

tion 2 gives further details of the DSM Model and de-
scribes the memory coherence problem. Sections 3
to 5 discusses various memory coherence schemes in
the context of different operating systems that have
actually implemented the schemes. We conclude our
paper in Section 6.

2. A Shared Virtual Memory or Distributed
Shared Memory (DSM) Model

In this section, we first discuss the DSM Model in
further detail (Subsection 2.1) and then describe the
memory coherence problem (Subsection 2.2).

2.1. Description
A DSM allows the use of a shared programming

paradigm in a loosely coupled system which con-
tributes to ease of programming and portability. As
was introduced earlier (See Figure 3), a DSM con-
stitutes of a single address space shared by a num-
ber of processors, which allows processors to access
memory locations directly. The mapping between
local memories and the shared virtual memory ad-
dress space is facilitated by the memory managers.
This address space is partitioned into pages, each of
which have a status flag that can signal it is read-only
or write. A read only page can exists in the memo-
ries of many processors. A write page can only exist
in one processor’s physical memory. It is important
to note that this shared memory only exists virtually.
On the occurrence of a local page fault, a memory
manager will try to retrieve the page from the disk
or from another processor. In addition, the manager
shall guarantee the atomicity if such an operation in-
volves a write.

An important responsibility of the memory man-
agers is to always keep the address space coherent at
all times [6], such that any read operation performed
on a memory location returns the same value as the
most recent write operation on that same location.
This is known as memory coherence, which is dis-
cussed next.

2.2. The Memory Coherence Problem
“A memory is coherent if the value returned by a

read operation is always the same as the value writ-
3



ten by the most recent write operation to the same
address.” [9]. It follows that if there exists only one
memory access path to a memory, there would be no
coherence problem, since the memory can be read
or written on by only one processor at a time. Of
course, this assumption does not hold in today’s par-
allel, multiprocessor architectures.

Before it was encountered in DSM, the memory
coherence problem was also faced in uniprocessors
and multi-cache processors [9]. A multicache mul-
tiprocessor consists of a number of processors that
share a physical memory through a private cache.
The size of the cache is relatively much smaller than
that of the physical memory, and the bus that con-
nects the cache to the physical memory is relatively
fast. This allowed the development of coherence
protocols whereby conflicts on the same memory
location could be solved with very little time de-
lay. These coherence protocols generally involved
interrogating all processors in the network (via bias)
about the status of a page through a broadcast, and
were termed as snoopy protocols [3]. An example of
such a protocol is shown in Figure 4.

The memory coherence problem becomes more
complicated in DSM. This is because a DSM model
works on a loosely coupled system built on top of
an interconnection network. This means the commu-
nication cost between processors is not negligible.
Consequently, any write conflict is not likely to be
resolved within a short-time.

2.2.1. Ideas on Ensuring Memory Coherence in the
DSM model

Early researchers have addressed the problem
from the granularity angle. In particular, they pro-
posed minimizing the size of the pages (the unit of
data transfer in a DSM model) with the assumption
that the cost of communicating large sized pages is
not much larger than the cost of smaller ones [9]. The
benefit of this approach is that it reduces the prob-
ability of memory contention (conflicts) among the
processors.

The other design choice researchers focused upon
was on how the pages were transferred. These strate-
gies are summarized in Figure 5 [9]. The difficulty of
the combinations of the strategies were hypothesized
by Li and Hudak (For details the reader is encour-

aged to see [9]). As can be seen, these strategies had
two aspects, page synchronization and page owner-
ship.

Page synchronization can be done in 2 ways: the
invalidation approach and the write broadcast ap-
proach. In the invalidation approach, a processor
has either write or read access to a page, where all
read-only copies of a page are invalidated before a
processor writes to a page [6]. In a write-broadcast
approach, all copies of a particular page are updated
after a processor writes on that page [10].

The page ownership aspect of these strategies gov-
erned who (which processor or processors) would
control the transfers of the pages. These approaches
are described in Section 3 in the context of a system
that implemented them, IVY.

Over the years, there have been many other strate-
gies proposed, many of which rely on the above
concepts, others propose a completely new solution
model. We discuss these approaches in the following
sections.

3. IVY

3.1. Overview of the System

IVY is among the first implementations of the dis-
tributed shared memory system [6]. It was imple-
mented on the Apollo Domain [11, 12]. The Apollo
Domain is an integrated system of Apollo worksta-
tions and servers connected by a 12M bit/sec base-
band. It used a single token ring network. The
Apollo Domain uses the Aeges operating system;
IVY was implemented on a modified version of
Aegis in the Apollo Domain. At the time, IVY
achieved significant speedups in performing non-
trivial operations like matrix multiply and dot prod-
uct, and motivated the use of a shared memory model
on loosely coupled systems.

The hierarchy of the IVY system is shown in Fig-
ure 6. It consists of five modules as shown. Three
of the modules act as interfaces to the client (process
management, memory allocation, initialization). The
process management module implements operations
for process control, process migration, and process
synchronization. The remote operation module im-
plements RPC mechanisms. The memory allocation
module is responsible for allocating memory to the

4



Figure 4: A demonstration of a snoopy-based cache coherence scheme [3].

Figure 5: Fundamental strategies for addressing memory coherence problem in DSM [9].

data (pages) and works in conjunction with the mem-
ory mapping module, which implements the map-
ping between the local memories and the shared vir-
tual memory address space.

Figure 6: The hierarchy of the IVY system [6].

3.2. Preliminaries on the Memory Coherence Algo-
rithms Used

For the purposes of this study, we focus on
the memory coherence handling approaches imple-

mented by the memory allocation module and the
memory mapping module in the experiments done by
Kai Li [6]. These approaches rely on a DSM archi-
tecture where each processor consists of a page table
data structure, which consists of 3 kinds of informa-
tion about pages in the processor’s local memory [9]:
(1) the accessibility of the page (access), (2) the pro-
cessor number that have copies of that page (copy-
set), and (3) a lock for synchronization (lock). For
space efficiency, this page table has been compacted
by the use of bit vectors to represent the data [1].
They are discussed next in Subsections 3.3, 3.4, and
3.5, according to the descriptions in [9].

3.3. Centralized Manager Algorithm

The memory managers of one of the processors is
assigned as the central memory manager. The pro-
cessor with the central memory manager has two ta-
bles: Info and PTable. The other processors only
have PTable.
Info has a set of 3-tuple data for each page. The

constituents of the 3 tuples for any page p are: (1)
an owner field that stores the name of the proces-
sor which had the most recent write access to p, (2)

5



a copy set field that has all processors with copies
of p, and lock field for synchronizing requests to p.
PTable has accessibility information about a page in
the local processor. It has two fields: access and lock.

By this design, therefore, only one manager knows
the owner of a page. Whenever any processor re-
quests a read copy of page p, the owner of p sends a
copy of p to the requesting processor.

In the centralized algorithm the successful writer
to a page always has ownership of the page. On
finishing a read or write request, a processor sends
a confirmation message to the manager to indicate
completion of the request. (Later optimization to the
protocol, eliminates the need to send confirmations
messages.)

As we have mentioned, Info table and PTable

have page-based locks. They are used to synchronize
the local and remote page faults. At the local-level,
within a processor, if there exists multiple processes
waiting for the same page, the locking mechanism
prevents the processor from sending more than one
request. At the remote-level, if a request for a page
arrives and the processor is accessing the page table
entry, the locking mechanism enters the request in a
queue and holds it until the entry is released. In this
manner, the manager is able to synchronize multiple
requests from different processors.

3.4. Fixed Distributed Manager Algorithm

The main bottleneck of the previous approach is
that all managerial tasks are centralized.

In this light, the fixed distributed manager algo-
rithm distributes the managerial task among the pro-
cessors. It does so by assigning each processor a pre-
determined subset of the pages to manage. This dis-
tribution can be done using mapping by a number
of ways. One method is to have an even distribu-
tion of the pages, using a hashing function, H(p) =

(p ÷ s) ∗ mod(N) where p is the page number, N is
the total number of processors, and s is the number
of pages per segment. Other methods can also allow
clients to provide their own mapping functions.

In this algorithm, when a fault occurs on page p
at processor x, x requests processor H(p) (which has
the true page), and then continues as in the central-
ized manager algorithm. Overall, although it is dif-
ficult to find a fixed distribution function that will fit

all applications, the distributed version has shown to
be superior to the centralized version when there is a
high page fault rate in the parallel algorithm [9].

3.5. Dynamic Distributed Manager Algorithm
The dynamic distributed manager algorithm intro-

duces the notion of a “probable” owner of a page. It
keeps track of all the pages in each processors’s page
table using an additional field called probOwner in
each page entry. The value of this field can be “true”,
which would indicate that this processor is the actual
owner of the page, or it can be “probowner”, which
indicates that the the processor is probably an owner
of the page. This approach is at least guaranteed to
provide the start of a sequence of processors among
which one is the true owner. Whenever a processor
receives an invalidation request, disowns a page, or
passes a page fault request.

3.6. IVY Speedup
Figure 7, shows the speedups obtained by IVY for

some parallel programs [6].
As we can see, the speedups were almost linear

with the matrix multiply and the traveling salesman
programs. In their implementation, the matrix multi-
ply program assumes that the multiplicand matrices
are in the same processor at the start and are paged
to the other processors on demand. For the travel-
ing salesman problem, a process is created for each
processor, which executes the branch-and-bound al-
gorithm on a branch obtained from the shared virtual
memory. The processes continue to run parallelly
until a the tour (which constitutes visiting each node
in a graph using the minimum cost). The speedups
for these algorithms could be attributed to the high
degree of localized computations in these programs.

However, for the dot product program, the
speedup was low. This can be explained by the fact
that the matrix elements are referenced only once in
the program, hence communication costs of the pro-
gram exceeds the computation cost of the program.

4. DASH

4.1. Overview of the System
The Stanford DASH multiprocessor [13] was de-

signed at Stanford University and became opera-
tional in 1991. It implements a DSM architecture

6



Figure 7: Speedups of the IVY system [6].

that supports cache coherence with distributed direc-
tories. In this section, we first look at a memory
coherence mechanism (Subsection 4.2) that formed
the foundation of the protocols used by DASH.
These protocols are subsequently explained in Sub-
section 4.3.

4.2. Directory Based Coherence

These schemes are similar to the basis of the ones
mentioned in the previous section. Here we also have
processors relying on a data structure, called a direc-
tory to find the cached locations (locations of cache
blocks) of the copies of a page. It assumes there
is a single monolithic directory that consists of all
the information. Each cache block operates with 3
states [3]—1) Invalid: The cache block cannot be
used by the processor, 2) Shared: The cache block is
readable but has copies in other processors (in which
case, the directory entry for this block contains a
list of those other processors - the block is readable
only), 3) Exclusive: the block only exists in the cache
of this processor and is writable.

As done in the protocols discussed in the previ-
ous section, this protocol ensures cache consistency
by invalidating all cache blocks that have a copy of
a cache block, before assigning a cache block to
the exclusive state. Thus like the protocols in Sec-
tion 3, these protocols also avoid the pitfall of the
snoopy protocols (see 2.2), all processors had to be
queried about whether they contained a copy of data
via broadcast.

The processing of the requests are serialized at
the directory, i.e. the directory can be accessed by
one processor at a time. This synchronous approach

avoids race conditions, when processors write to the
same block. The problem with this approach, how-
ever, is that it is too conservative and it takes away
any opportunity for parallelization. For instance, it
may happen that two processors request to read the
directory to write to different cache blocks. In such a
scenario, their requests can be processed in-parallel.

Another problem with this scheme was having a
single directory. This introduced the single-point-of-
failure bottleneck. Also, it was not scalable, as it
was not feasible to have a directory large enough to
accommodate information of cache blocks in a net-
work of many processors. As a consequence, this
idea didn’t get traction [3] and the next logical step
was to distribute the directory among the processors.

4.3. Distributed Directory Based Coherence

A typical cache-coherent DSM multiprocessor ar-
chitecture with distributed directories is shown in
Figure 8. The directory information is the same as
those described in Subsection 4.2.

This protocol implements a type of message pass-
ing approach, where messages are sent among the
requesting processor node (the local node), the node
containing the address of the block that the local
node desires to read or write (the home node), and
the node that contains the cache block in the exclu-
sive state (the remote node). A demonstration of this
protocol is shown in Figure 10([3]).

The problem with this protocol is that satisfying a
remote request requires at least two messages: from
the local to the home node to request a cache block
and then from the home to the local node to reply
with the data. First, let us consider the case of a re-
motely cached data item in the exclusive state. Here
at least three messages are required (local to home,
home to remote, and remote to local). Also, if the re-
quest entails the invalidation of a heavily shared ob-
ject, far greater number of messages will need to be
passed. Since the architecture forces all these opera-
tions to perform atomically, the likelihood of a dead-
lock becomes high.

The DASH architects wanted to avoid this dead-
lock bottleneck by introducing some kind of se-
rialization as was done in the snoopy coherence
schemes, keeping in mind that a complete import of
the bus based scheme would mandate a sacrifice in

7



Figure 8: A distributed memory multiprocessor using distributed directories [3].

scalability. They thus designed a scheme where each
node of a DSM network consisted of four proces-
sors. Although this was a moderate compromise on
the performance of the system, it helped to mitigate
the deadlock problem. (The performance was later
improved using a two-processor node design.) While
the nodes were connected to each other by an inter-
connection network, the processors in each node are
connected to each other via bus. This prototype has
a total of 16 such nodes, tallying the total count of
processors to 64. This is shown in Figure 9.

Figure 9: The Stanford DASH architecture [3].

4.4. DASH Speedup

Figure 11 [3], shows the speedups obtained
by DASH for some parallel programs from the
SPLASH [14] Suite. The applications include
partial differential equation solvers, like Ocean,
to applications using a variety of n-body model-
ing techniques— BarnesHut, fast multipole method

(FMM), and radiosity. As can be seen from the fig-
ure, the speedups were significant.

Figure 11: Speedups for DASH [3].

5. TCC

5.1. Design Motivations

A Transactional memory Coherence and Consis-
tency (TCC) model, a novel shared memory model,
was presented in [15]. TCC aims to take advantage
of the interprocessor bandwidth and thereby simplify
the protocols used to manage communications and
synchronization between the processors. In particu-
lar, TCC takes advantages of both message passing
systems and shared-memory model systems, while
avoiding the pitfalls of both—

1) Message passing systems provide a challeng-
ing programming model, making the programmers
explicitly decide how to distribute the data items of

8



Figure 10: A demonstration of the distributed directory based cache coherence protocol [3].

the parallel program over the system, although it per-
forms the synchronization and communications im-
plicitly.

2) Shared memory model systems simplifies the
programming model by providing a common coher-
ent view of the system, but adds additional hardware
to the underlying system, which can make program-
ming the hardware complicated [16]. As such hard-
ware are required to track the program data anywhere
in the system, performance of these systems have
been an issue. As was discussed earlier, the serial-
ization of various communication events to the gran-
ularity of individual read and write requests further
slows down the operation of such systems.

TCC reduces the need for hardware to support fre-
quent, latency-sensitive coherence requests for indi-
vidual cache lines. It incorporates implicit message
synchronization as message passing protocols.

5.2. Operation Mechanism
A 3-node TCC system is shown in Figure 12. As

can be seen the three nodes can be connected with
each other using a bus or a network.

TCC’s design is based on continually performing
speculative transactions. A transaction is defined as
a sequence of instructions that is guaranteed to ex-
ecute and complete only as an atomic unit. After
the completion of a transaction it yields a block of
writes committed to the shared memory (only as an
atomic unit). The hardware then gives a system-wide

Figure 12: A 3-node TCC system [15].

notification for permission to commit its writes. On
receiving this permission, the processor broadcasts
the all writes for the entire transaction as one large
packet to the rest of the system by taking advantage
of the interconnect bandwidths provided by the sys-
tem. The broadcast is unordered. However, the indi-
vidual stores for the same commits are separated and
reordered.

Snooping, as done in message passing systems, is
also implemented by other processors on the stores.
In addition, the combination of all writes of a whole
transaction and passing them as a large packet helps

9



with reducing latency — it requires lesser number of
messages to transfer for synchronization of the data.
As a consequence, the speed-ups obtained by TCC
for several recent benchmark parallel algorithms was
shown to be close to the optimal linear.

The benefit of TCC over previous memory consis-
tency and coherence models like sequential and re-
laxed consistency models [2] is that it just imposes a
sequential ordering of between transaction commits,
rather than individual loads and stores. This is made
possible because in TCC, the stores are buffered and
kept within the processor for the entire length of the
transaction. This also ensures atomicity of the trans-
action.

6. Conclusion

The quest for designing efficient coherence pro-
tocols for the shared memory model remains ongo-
ing. It is still unclear what combinations of hardware
and software solutions would give the best outcomes
of such protocols. In this paper, we have discussed
some memory coherence approaches that were used
in some of the more successful shared memory mul-
tiprocessors in terms of their speedups with bench-
mark parallel program applications.

References

[1] K. Li, Shared Virtual Memory on Loosely Coupled Mul-
tiprocessors, Ph.D. thesis, New Haven, CT, USA, 1986.

[2] S. V. Adve, K. Gharachorloo, Shared memory consistency
models: A tutorial 29 (1996) 66–76.

[3] J. Hennessy, M. Heinrich, A. Gupta, Cache-coherent dis-
tributed shared memory: perspectives on its development
and future challenges, Proceedings of the IEEE 87 (1999)
418–429.

[4] Ibm pseries 690, http:// www-03.ibm.com/ sys-
tems/power/hardware/ pseries/highend/p690/index.html,
2005.

[5] B. Nitzberg, V. Lo, Distributed shared memory: a survey
of issues and algorithms, Computer 24 (1991) 52–60.

[6] K. Li, Ivy: A shared virtual memory system or par-
allel computing, in: Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, Pennsylvania
State University Press, 1988, pp. 94–101.

[7] M. P. Herlihy, B. Liskov, A value transmission method
for abstract data types, ACM Trans. Program. Lang. Syst.
4 (1982) 527–551.

[8] M. L. Powell, B. P. Miller, Process migration in (de-
mos/mp), in: Proceedings of the Ninth ACM Symposium

on Operating System Principles (SOSP 1983), pp. 110–
119.

[9] K. Li, P. Hudak, Memory coherence in shared virtual
memory systems, ACM Trans. Comput. Syst. 7 (1989)
321–359.

[10] D. A. Patterson, Lecture notes on snooping vs. directory
based coherency, 1996.

[11] Apollo archives, http://jim.rees.org/apollo-archive/, 1998.
[12] P. Leach, P. Levine, B. Douros, J. Hamilton, D. Nelson,

B. Stumpf, The architecture of an integrated local net-
work, IEEE Journal on Selected Areas in Communica-
tions 1 (1983) 842–857.

[13] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber,
A. Gupta, J. Hennessy, M. Horowitz, M. S. Lam, The
stanford dash multiprocessor, Computer 25 (1992) 63–
79.

[14] J. P. Singh, W. Weber, A. Gupta, SPLASH: Stanford Par-
allel Applications for Shared-memory, Technical Report,
Stanford, CA, USA, 1992.

[15] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, K. Olukotun, Transactional memory co-
herence and consistency, in: Proceedings of the 31st
Annual International Symposium on Computer Architec-
ture, ISCA ’04, IEEE Computer Society, Washington,
DC, USA, 2004, pp. 102–.

[16] A. Charlesworth, Starfire: Extending the smp envelope,
IEEE Micro 18 (1998) 39–49.

10


	Introduction
	A Shared Virtual Memory or Distributed Shared Memory (DSM) Model
	Description
	The Memory Coherence Problem
	Ideas on Ensuring Memory Coherence in the DSM model


	IVY
	Overview of the System
	Preliminaries on the Memory Coherence Algorithms Used
	Centralized Manager Algorithm
	Fixed Distributed Manager Algorithm
	Dynamic Distributed Manager Algorithm
	IVY Speedup

	DASH
	Overview of the System
	Directory Based Coherence
	Distributed Directory Based Coherence
	DASH Speedup

	TCC
	Design Motivations
	Operation Mechanism

	Conclusion

