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Justification Statement: This paper presents our perspectives on turning program analyses
into Big Data problems that are amenable to systems solutions. Traditional approaches to
the scalability problem of a static analysis are to raise the abstraction level, attempting
to reduce/hide/merge intermidate states of the analysis. Inspired by how large-scale data
analytical systems were built to process datasets as large as the whole Internet, we argue that
systems solutions are worth considering for program analysis workloads and they do exist
if we can reduce the computation complexity of a program analysis algorithm and increase
the size of data it operates on. We use the CFL-reachability-based pointer analysis as an
example to show how to develop a scalable system that can analyze very large programs.
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Abstract
“Big Data” has become a central topic in modern computing. To deal with datasets that are too
large to process with traditional approaches, applications (e.g., information retrieval or machine
learning) have built intimate relationships with systems, resulting in proliferation of large-scale,
data-intensive systems tailored for various kinds of data analytics and learning applications. This
paper shows that many sophisticated static analyses, which are known to be difficult to scale,
can also be converted to Big Data problems that benefit from data analytical systems.

Our work was driven by a Big Data thinking – if we can turn a computationally difficult
problem to an equivalent problem with simpler computation over large amounts of data, a systems
solution may exist. We show that such a conversion is possible for many static analysis algorithms.
Unlike traditional analysis techniques that trade off precision (i.e., usefulness) for scalability, the
Big Data treatment of a static analysis advocates to make intermediate states of the analysis
explicit, enabling the development of parallel systems that utilize disk and cluster support to
achieve efficiency and scalability.
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1 Introduction

Modern computing has entered the Big Data era. Quickly obtaining useful information
from extremely large amounts of data coming from all aspects of human lives requires
processing capabilities that traditional data processing applications do not have — these
applications are often hand-written and tuned by developers, and have assumptions on the
execution environment (e.g., memory requirement) that do not hold for real-world datasets.
For example, a simple webgraph collected by Yahoo [1] has more than six billion edges and
loading it entirely into memory needs at least 153GB of main memory [31], a requirement
hard to fulfill even in industry.

To overcome these challenges, many Big Data software systems have been developed to
meet different kinds of computational needs [10, 9, 18, 40, 39, 19, 12]. At their core is a
“one-stone-two-birds” approach, in which the optimization for scalability is mainly achieved
by the (distributed or disk-based) system itself, requiring the developers to only write simple
programs using the interfaces provided by the system. Pioneered by MapReduce [9], data
processing in each system relies on a computation model that partitions data and parallelizes
the processing. Iterative algorithms are often used to resolve data dependencies across
partitions. More recently, large-scale distributed systems – including DistBlief [8], Project
Adam [7], or TensorFlow [3] – have been developed to tackle emerging machine learning
problems, such as training and inference on deep neural networks.

The relationship between systems and applications has never been so intimate in the
computing history. However, the PL community has not been in this relationship yet. This
paper argues that many program analysis techniques, especially those designed for analyzing
large codebases, are important workloads worthy of consideration of systems solutions. We
believe that it is time for PL to (re)build intimacy with systems, which may lead to different
angles of formulating and solving some of the most difficult problems in the PL community.

1.1 Big Data Thinking
Our research group at UC Irvine, while with a background in program analysis, has been
working on Big Data systems for several years. We observe that the term Big Data has
often been used only to refer to the fact that data is large and everywhere. However, there
is an important aspect of Big Data that is often overlooked, which is – what we call – Big
Data thinking. Big Data is not only a phenomenon; but also it defines a unified scheme for
solving a class of computational problems with large inputs. We describe the scheme using
the following formula:

Big Data Solution = Large Dataset + Simple Computation Model + System Design (1)

The first two components (dataset and computation model) belong to the application,
which can be thought of as parameters to the system design. On one hand, a large amount
of data is the motivation; traditional approaches would suffice otherwise. On the other hand,
having a simple computation model makes it possible for the computation to be “mechanized”
by a system without much user intervention. Most of today’s well-known Big Data problems
(e.g., graph processing, neural network training, or text analytics) are naturally data-driven
— they were born with large data inputs; applying Big Data thinking to these problems seems
straightforward. An interesting question is what other problems are amenable to this Big
Data scheme? Would Big Data thinking also apply to the problems that do not operate on
large datasets?
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We observe that it is indeed possible to devise a Big Data solution for many traditional
problems that do not appear data-intensive, if there exist means to turn complex computation
into large amounts of data. For example, problems in computational logic and software
analysis, such as model checking and constraint solving, often maintain an extremely large
number of intermediate states. All the existing techniques attempt to reduce this intermediate
information (e.g., by employing abstractions or exploiting similarities to merge information),
essentially decreasing the size of data at the cost of increased complexity in computation. The
design of these techniques stems from the fear of state explosion and the resulting memory
blowup, with an implicit assumption the execution environment is a single machine with a
limited amount of memory and we do not know what to do if the need of the computation
goes beyond that. However, handling large amounts of information is exactly the problem
the Big Data community deals with everyday. The recent advancements in data-intensive
systems (e.g., the ability of processing graphs of trillions of edges) provide a strong indication
that physical resources should no longer be the primary concern in the future algorithm
design.

Freeing algorithm designers from worrying about lack of resources enables a critical
mindset shift – making the state information explicit and letting a system deal with it, as
opposed to reducing the information by developing algorithms to abstract or hide it. The
large number of states maintained during the computation naturally form a big dataset,
essentially converting the problem into a Big Data problem.

1.2 A Big Data Perspective on Program Analysis

Dynamic analysis generates a large amount of profiling data, lending itself naturally to a Big
Data solution. In fact, there already exists work [43] that uses MapReduce to analyze logs
generated by distributed systems. This paper focuses on static analysis, for which it is not
immediately obvious that a Big Data solution would exist. We demonstrate how to apply Big
Data thinking to a class of static analyses that can be formulated as the context-free-language
(CFL) reachability problem. In particular, we show that, by making transitive edges explicit,
a CFL static analysis can be converted to a Big Data problem that has a systems solution.
We hope that this formulation can inspire further thoughts on applying Big Data thinking
on other program analysis problems.

2 A “Big Data” Formulation of CFL Rechability

Pioneered by Reps et al. [21, 24], there is a large body of work on context free language
reachability based program analyses [14, 37, 38, 20, 5, 42, 41, 30]. The program to be analyzed
is first translated to a graph representation; the reachability computation is performed on the
graph guided by a context-free grammar that encodes the balanced parentheses property of
an analysis. At a high level, let us suppose each edge in the graph is labeled either an open
parenthesis ‘(’ or a close parenthesis ‘)’. A vertex is reachable from another vertex if and only
if there exists a path between them, the string of labels on which has balanced ‘(’ and ‘)’.
The parentheses ‘(’ and ‘)’ have different semantics for different analyses. For example, for a
C pointer analysis, ‘(’ represents an address-of operation & and ‘)’ represents a dereference *.
A pointer variable can point to an object if there is an assignment path between them that
has balanced & and *. For instance, a string “&&**” has balanced parentheses while “&**&”
does not.
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Program:

1 a = b;

2 b = &c;

3 d = &a;

4 e = malloc(...);

5 *c = e;

6 t = *d;

7 x = *t;

8 y = *x; 
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Figure 1 A program and its expression graph: solid, horizontal edges represent assignments (A-
and M- edges); dashed, vertical edges represent dereferences (D-edge); dotted, horizontal edges
represent transitive edges labeled non-terminals. A4 indicates the allocation site at Line 4. OF , VF ,
and AL represent objectFlow, valueFlow, and alias, respectively.

2.1 Background: Pointer Analysis for C
Pointer analysis is a widely used example of CFL-reachability formulation. A pointer analysis
computes, for each pointer variable, a set of heap objects (represented by allocation sites)
that can flow to the variable. This set of objects is referred to as the variable’s points-to set.
Alias information can be derived from this analysis — if the points-to sets of two variables
have a non-empty intersection, they may alias.

We use the formulation in [44] to illustrate the CFL-reachability formulation of a C
pointer analysis. The analysis described in this section is flow-insensitive in the sense that
we do not consider control flow in the program. A program consists of a set of pointer
assignments. Assignments can execute in any order, any number of times. For simplicity of
presentation, the discussion here focuses on four kinds of three-address statements (which
are statements that have at most three operands):

a = b Value assignment a = ∗b Load
∗b = a Store a = &b Address-of

Complicated statements are often broken down into these three-address statements in the
compilation process by introducing temporary variables. Our analysis does not distinguish
fields in a struct. That is, an expression a-> f is handled in the same way as ∗a, with offset
f being ignored. As reported in [44], ignoring offsets only has little influence on the analysis
precision, because most fields are of primitive types.

For each function, an expression graph – whose vertices represent C expressions and edges
represent value flow between expressions — is generated; graphs for different functions are
eventually connected to form a whole-program expression graph. Each vertex on the graph
represents an expression, and each edge is of three kinds:

Dereference edge (D): for each dereference ∗a, there is a D-edge from a to ∗a; there is
also an edge from an address-of expression &a to a because a is a dereference of &a.
Assignment edge (A): for each assignment a = b, there is an A-edge from b to a; a and
b can be arbitrary expressions.
Alloc edge (M): for each assignment a = malloc(), there is an M-edge from a special
Alloc vertex to a.

Figure 1 shows a simple program and its expression graph. Each edge has a label,
indicating its type. Solid and dashed edges are original edges in the graph and they are
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labeled M , A, or D. Dotted edges are transitive edges that will be discovered by the analysis
as computation progresses.
Context-free Grammar The pointer information computation is guided by the following
grammar:

Object flow: objectFlow ::= M valueFlow
Value flow: valueFlow ::= (A alias?)∗
Expr alias: alias ::= D valueFlow D

This grammar has three non-terminals objectFlow, valueFlow, and alias. For a non-
terminal T , a path in the graph is called a T -path if the sequence of the edge labels on the
path is a string that can be reduced to T . In order for a variable v to point to an object o
(i.e., a malloc), there must exist an objectFlow path in the expression graph from o to v. The
definition of objectFlow is straightforward: it must start with an alloc (M) edge, followed by
a valueFlow path that propagates the object address to variables. A valueFlow path is either
a sequence of simple assignment (A) edges or a mix of assignments edges and alias paths.

An alias path is represented by D valueFlow D. Each edge has an inverse edge with
a “bar” label. For example, for each edge a D−→ b, the edge b D−→ a exists automatically.
D represents the inverse of a dereference and is essentially equivalent to an address-of.
D valueFlow D represents that if we take the address of a variable a, propagate the address
through a valueFlow path to another variable b, and then do a dereference on b, the result is
the same as the value in a.

Note that valueFlow and alias mutually refer each other. This definition captures the
recursive nature of an alias and valueFlow path. In this grammar, D and D are the open
and close parentheses that need to be balanced.
Example In Figure 1, e points to A4, since the M edge between them forms an objectFlow
path. There is a valueFlow path from &a to d, which enables an alias path from a to ∗d.
This alias path then induces two valueFlow paths from b to t and from &c to t, which, in
turn, contribute to the forming of the valueFlow paths from c to x, making ∗c and ∗x alias.
Hence, there exists a valueFlow path from e to y, which, together with the M edge at the
beginning, forms an objectFlow path from A4 to y. This path indicates that y points to A4.
The dotted edges in Figure 1 shows these paths.

2.2 Traditional PL Solution vs. Big Data Solution
Traditional Solution The traditional way to implement this analysis is to maintain a
worklist, each element of which is a pair of a newly discovered vertex and a stack simulating
a pushdown automaton. The implementation loops over the worklist, iteratively retrieving
vertices and processing their edges. The traditional implementation does not add any
physical edges into the graph (due to the fear of memory blowup), but instead, it tracks path
information using pushdown automata. When a CFL-reachable vertex is detected, the vertex
is pushed into the worklist together with the sequence of the labels on the path leading to the
vertex. When the vertex is popped off of the list, the information regarding the reachability
from the source to the vertex is discarded.

This traditional approach has at least two significant drawbacks. First, it does not
scale well when the analysis becomes more sophisticated or the program to be analyzed
becomes larger. For example, when the analysis is made context-sensitive, the grammar
needs to be augmented with parentheses representing method entries/exists; the checking
of the balanced property for these parentheses also needs to performed. Since the number
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of distinct calling contexts can be very large for real-world programs, naïvely traversing all
paths is guaranteed to be not scalable in practice. As a result, various abstractions and
tradeoffs [29, 27, 13, 28] have been employed, attempting to improve scalability at the cost of
precision as well as implementation straightforwardness. For example, in a widely-used Java
pointer analysis [29], more than three quarters of the code is to perform approximations to
make sure some results can be returned before a user-given time budget runs out. The base
algorithm implementation takes a much smaller portion. This level of implementation and
tuning complexity simply does not align with the “simplest-working-solution” [17] philosophy
of systems builders, creating a practicality obstacle for static analysis to be used in industry.

Second, the worklist-based model is notoriously difficult to parallelize, making it hard
to fully utilize modern computing resources. Even if multiple traversals can be launched
simultaneously, since none of these traversals add transitive edges onto the program graph as
they are being detected, every traversal performs path discovery completely independently,
resulting in a great deal of wasted efforts.
Applying Big Data Thinking Recall that a Big Data solution may exist if the analysis
can be formulated as a problem with a large dataset and simple computation. Following the
above discussion of making intermediate states explicit (cf. §1), we advocate to add physical
transitive edges into the program graph. In other words, a physical edge labeled E is added
from a vertex A to vertex B if there exists a path from A to B whose edge label sequence
matches a production in the context-free grammar with E being the non-terminal on the left
hand side (LHS) of the production. In addition, inverse edges are also explicitly added into
the graph before the analysis starts.

Adding physical edges as the analysis progresses makes it possible to devise a Big Data
solution to this static analysis problem. First, representing transitive edges explicitly rather
than implicitly leads to addition of a great number of edges (e.g., even larger than the number
of edges in the original graph). This gives us a large (evolving) dataset to process, satisfying
the dataset component in Formula (1). Second, the computation only needs to match the
labels of consecutive edges with the productions in the grammar and is thus simple enough to
be “systemized”. This satisfies the second component in Formula (1). Of course, dynamically
adding many edges can make the computation quickly exhaust the main memory. However,
this should not be a concern, since there are already many systems [18, 15, 34, 22, 11, 31]
built to process very large graphs (e.g., the webgraph for the whole Internet).
Existing Datalog and Database-backed Analyses: Treating Execution Engine as
A Blackbox Recent work [36, 6] shows the effectiveness of expressing static analyses as
Datalog programs. While leveraging Datalog makes analysis implementations easier, program
analysis researchers often treat Datalog as a blackbox. Existing Datalog engines such as
LogicBlox [2], Socialite [16], Myria [32], and BigDatalog [26] are designed for general-purpose
relational algebra – rule evaluation is often implemented as table joining. While there exists a
large body of work on efficient table joining in the database community, computing dynamic
transitive closure on a program graph is a very special case where the input tables are exactly
the same (representing existing edges) and the resulting table contains only a small addition
of newly discovered transitive edges. This high degree of commonalities between input and
output implies a large optimization space. Recently Weiss et al. [35] developed a “middle
layer” that encodes dataflow analyses as graph problems tuned for database-backed interfaces.
While we share the same goal of using a system to manage the resource usage of a static
analysis, Weiss et al. relied completely on an existing Semantic Web database. This paper
advocates to build execution engines tailored for the need of program analysis, instead of
treating them as blackboxes as is done by most program analysis researchers.
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2.3 Graspan: An Out-Of-Core System for Parallel Dynamic Transitive
Closure Computation

This subsection discusses the design of an out-of-core system, Graspan, to fulfill the third
component of Formula (1). Before we developed Graspan, the question we asked was whether
any existing systems could be used to process program graphs. Unfortunately, we soon
realized that a ground-up redesign (i.e., from the programming model to the runtime engine)
was needed to build a graph system for analyzing large programs. The main reason is that
the graph workload for static analyses is significantly different from a regular graph algorithm
(such as PageRank) that iteratively performs computations on vertex values on a static graph.
A CFL-reachability-based analysis, on the contrary, focuses on computing reachability by
repeatedly adding transitive edges, rather than on updating vertex values.

The dynamic transitive closure computation in the static analysis workload dictates two
important abilities of the graph system. First, at each vertex, all its incoming and outgoing
edges need to be visible to perform label matching and edge addition. For example, when
vertex b is processed, both a l1−→ b and b l2−→ c need to be accessed to add the edge from a to c.
This requirement immediately excludes edge-centric systems such as XStream [23] from our
consideration, because these systems stream in edges in a random order and, thus, this pair
of edges may not be simultaneously available. Second, the system needs to support a great
number of edges added dynamically. In the presence of many dynamically added edges, it is
critical that the system is able to (1) quickly check edge duplicates and (2) appropriately
repartition the graph. Unfortunately, existing systems support neither of these features.

We have developed Graspan, a single machine, disk-based parallel graph processing system
tailored for CFL-reachability-based static analyses. Since program analysis is intended to
assist developers to find bugs in their daily development tasks, their machines are the
environments in which we would like our system to run, so that developers can check their
code on a regular basis without needing to access a cluster. Hence, a disk-based system
became our choice.

Given a program graph and a grammar specification of an analysis, Graspan offers two
major performance and scalability benefits: (1) the core computation of the analysis is
automatically parallelized and (2) out-of-core support is exploited if the graph is too big
to fit in memory. Graspan has three major phases: preprocessing, edge-pair (EP) centric
computation, and post processing. Preprocessing partitions the graph into multiple partitions,
each of which is a disk file containing a list of edges whose source vertices belong to an
interval and that are sorted based on source vertex IDs. Each edge in the file carries a
four-byte data field storing its label.

At the heart of Graspan is the parallel EP centric computation model that, in each
iteration, loads two partitions of edges into memory and “joins” their edge lists to produce
a new edge list. For example, if a i−→ b is in the first partition and b j−→ c is in the second
partition and production K := i j exists in the grammar, edge a K−→ c is appended to the
adjacency list of a in the first partition. The joining of these two partitions is done based on
a min-heap algorithm [4] that merges, for each vertex a and each of its outgoing edges a i−→ b,
all of b’s out-neighbors. This step automatically performs label matching and filters out
duplicate edges. Merging for multiple source vertices (e.g., a) can be performed completely
in parallel without any synchronization.

Graspan uses a novel scheduling algorithm to determine (1) which two partitions to
load at each time and (2) whether the computation can be terminated. Partition loading
favors partitions that are already in memory and those that have the best matching rates
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(i.e., how many edges in one partition whose target vertices are the source vertices of the
edges in another partition). The computation is terminated when no new edge can be
added between any two partitions. If too many edges are added in one single partition,
Graspan repartitions the graph to achieve load balancing. After the computation is done, the
postprocessing step provides the translation from graph vertices and edges back to variables
and statements in the source code of the program. Edges labeled the start non-terminal
represent the solution of the analysis. An additional benefit provided by Graspan is that
at the end of the computation, the graph contains not only the final solution, but also
all intermediate results of the analysis. For example, after Graspan’s computation for the
C pointer analysis described above, objectFlow, valueFlow, and alias solutions are all
available in the graph. Edges labeled objectFlow represent the points-to relation while
edges labeled alias represent the alias relation. Graspan does not need to perform any
further computation to obtain one kind of information (e.g., alias) from another kind (e.g.,
points-to), as is done by the existing techniques.
Use Graspan We have implemented fully context-sensitive pointer/alias and dataflow
analysis on Graspan. Context-sensitivity is achieved by making aggressive inlining [25]. That
is, we clone the body of a function for every single context leading to the function. This
approach is feasible only because the out-of-core support in Graspan frees us from worrying
about additional memory usage incurred by inlining. We treat the functions in recursions
context insensitively by merging functions in each strongly connected component on the call
graph into one function without cloning function bodies. The context-free grammar for the
pointer analysis is adopted from [44] and already discussed above. The grammar for the
dataflow analysis is adopted from Reps’ interprocedural, finite, distributive, subset (IFDS)
formulation of dataflow problems [21].

Since Graspan performs edge-pair centric computation that inspects a pair of edges at a
time, the user-defined grammar first needs to be normalized to an equivalent grammar in
which the RHS of each production contains at most two terms (terminal or non-terminal),
similar to the Chomsky normal form. At the center of Graspan’s programming model is
an API – addConstraint(Label lhs, Label rhs1, Label rhs2) – which can be used by the
developer to register each production in the grammar. lhs represents the LHS non-terminal
while rhs1 and rhs2 represent the two RHS terms. If the RHS has only one term, rhs2 should
be NULL. Hence, the only work for the analysis developer is to modify a compiler frondend
to generate the graph and specify the grammar; no tuning is needed for scalability.

2.4 Current Status of Graspan
Graspan has both a Java and a C++ version: it was first implemented in Java and later
adapted to C++ for performance. We ran Graspan (C++ version) on a low-end Dell desktop
(with a quad-core 3.2GHZ Intel i5-4570 CPU, 8GB memory, and a 1TB SSD, running Linux
4.2.0) to process program graphs generated by the fully context-sensitive pointer analysis
described above. Table 1 shows the programs we analyzed and a set of time comparisons
among Graspan-based, the traditional worklist-based, and the Datalog-based implementations
of the pointer analysis algorithm. For the worklist-base algorithm, we implemented the
context-sensitive version of Zheng and Rugina’s C pointer analysis [44] ourselves. We took the
expression graph generated by our frontend and used a worklist-based algorithm to compute
transitive closures. We used SociaLite [16] as our Datalog engine, which was developed at
Stanford and shown to outperform LogicBlox [2] and other shared-memory Datalog engines.

The worklist-based algorithm either ran out of memory or took a very long time (longer
than one day) on the same desktop where we ran Graspan. For example, when processing
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Program Ver #LoC #Inlines GraphSize GTime ATime STime
Linux kernel 4.4.0-rc5 16M 31.7M B: (249.50M, 52.88M) 1.67 hrs OOM OOM

A: (1.12B, 52.88M)
PostgreSQL 8.3.9 700K 290820 B: (24.97M, 5.20M) 5.96 hrs > 1 day OOM

A: (842.18M, 5.20M)
Apache httpd 2.2.18 300K 58269 B: (8.19M, 1.72M) 8.43 hrs > 1 day OOM

A: (904.34M, 1.72M)
Table 1 Programs analyzed, their versions, numbers of lines of code, numbers of function inlines,

sizes of their program graphs (before (B) and after (A) computation), Graspan processing time
(GTime), time used by a traditional worklist algorithm (ATime), and Datalog (SociaLite) processing
time (STime).

Linux, it ran out of memory in 13 minutes. When we moved it onto a server with 32 2.60GHZ
Xeon(R) processors and 32GB memory, it took this implementation 3.5 days to analyze
Linux and it consumed 29GB out of the 32GB memory. On the contrary, Graspan finished
processing Linux in 1.67 hours with less than 6GB memory on the desktop with a much
less powerful CPU (due to exploited parallelism and disk support). Datalog engines such
as SociaLite clearly could not scale to graphs that cannot fit into memory. For both the
pointer/alias and the dataflow analysis, it ran out of memory for Linux and PostgreSQL.
For httpd, although SociaLite processed the graphs successfully, SociaLite took much longer
than Graspan.

The implementations of Graspan are publicly available at https://github.com/Graspan.
The full technical description of Graspan can be found in our ASPLOS’17 paper [33].

3 Conclusions and Future Work

In this paper, we describe a Big Data perspective on scaling static program analysis to large
codebases. We demonstrate how to apply Big Data thinking to formulate CFL-reachability
based static analyses and the design of the Graspan system that utilizes out-of-core support
to parallelize and scale static analysis workloads.

There are many computationally difficult problems that can benefit from a similar Big
Data treatment. One example is SAT solving, which is fundamental to many software
analysis and verification tasks. We are currently developing a Spark-based distributed SAT
solver. By making intermediate resolvents explicit, SAT solving can also be converted
to a Big Data solution. As another example, many sophisticated static analyses rely on
constraint solving. Examples are path-sensitive type-state analysis, symbolic execution, and
various verification/synthesis tasks. An immediate follow-up of Graspan is to extend its
edge-pair-centric computation model to support analysis clients that depend on constraint
solving. For instance, constraints can be encoded as edge values and two edges match as
long as the conjunction of the constraints they carry has a satisfiable solution (as determined
by a constraint solver).
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