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Abstract—Deep Neural Networks (DNN) are increasingly com-
monly used in software engineering and code intelligence tasks.
These are powerful tools that are capable of learning highly
generalizable patterns from large datasets through millions of
parameters. At the same time, training DNNs means walking
a knife’s edges, because their large capacity also renders them
prone to memorizing data points. While traditionally thought
of as an aspect of over-training, recent work suggests that
the memorization risk manifests especially strongly when the
training datasets are noisy and memorization is the only recourse.
Unfortunately, most code intelligence tasks rely on rather noise-
prone and repetitive data sources, such as GitHub, which, due
to their sheer size, cannot be manually inspected and evaluated.
We evaluate the memorization and generalization tendencies in
neural code intelligence models through a case study across
several benchmarks and model families by leveraging established
approaches from other fields that use DNNs, such as introducing
targeted noise into the training dataset. In addition to reinforcing
prior general findings about the extent of memorization in DNNs,
our results shed light on the impact of noisy dataset in training.

Index Terms—memorization, generalization, models of code

I. INTRODUCTION

Data-driven software engineering and program analysis
approaches have been increasingly used in tasks such as type
prediction [1], method name prediction [2], [3] and many more
[4]–[6]. These approaches rely on large corpus of available
code repositories and use machine learning techniques to
extract useful patterns and insights about programs. In past
few years, an increasing number of such approaches use neural
networks at their core for extracting these patterns. Deep
neural networks are powerful machine learning techniques that
can express any hypothesis class through massive parameters
and hyper-parameters; they are universal approximators [7].
Studies have shown that the neural networks can use these
parameters and memorize arbitrary data points through their
massive parameters.

Memorization can be a double-edge sword: while it can help
to pick up sparse data points, it can also lead to memorizing
noise. It is specially important for the code intelligence
application where the data is usually extracted from noise-
prone sources such as GitHub. The sheer size of such data
sources makes inspection and cleaning of the dataset nearly
impossible. Allamanis et al. [8] showed that almost all datasets
used to train neural code intelligence models contain levels of
code duplication of 20% or more, which spuriously inflates

the reported models performance. The key problem with such
duplication is that it encourages the model to memorize, which
recent evidence suggests is directly adverse to the ability of
neural models to generalize [9].

In this work, we study memorization and generalization in
training neural code intelligence models through a case study
by following the study portrayed by Arpit et al. [9] and Zhang
et al. [10]. To this end, we induce noise to the datasets by
randomly altering the training labels and observing its impact
on different characteristics of training, e.g. loss values. By
studying the resulting trends, we can gain insight into the
impact of memorization artifacts in various models uniquely
proposed in our field, as well as memorization artifacts already
present in currently popular datasets. We experiment with this
approach by a case study on the method name prediction task
[2], [3] – a popular task commonly used in the evaluation
of code intelligence models [11]–[18]. We use two network
architectures, CODE2VEC [19] and CODE2SEQ [20], and two
datasets. To the best of our knowledge, it is the first case study
to evaluate memorization and generalization phenomena in the
neural code intelligence models.

We study multiple datasets including manually-crafted clean
dataset and dataset collected from GitHub. We add noise in
datasets by randomly changing a percentage of labels in the
training data, and then train the model on each noisy dataset.
By studying the resulting models in terms of both training and
(uncorrupted) testing metrics, including prediction score, the
spread of loss, F1-score, and critical sample ratio at various
noise levels and across datasets and models, we derive a range
of findings related to these models and datasets. For instance,
in the manually-crafted clean dataset, there is a significantly
less difference between scores among different noise levels
than in the potentially noise-prone GitHub dataset, signalling
that the latter is substantially more noise and ambiguous, to
begin with. A similar observation is found for the distribution
of loss, model’s F1-score, and critical adversarial sample ratio.

In our case study, all models manifested varying degrees of
memorization; models with higher memorization create more
complex hypothesis classes; heavily depends on the architecture
of models, and the impact of noise in the models based on
a manually-curated dataset was more pronounced than the
models based on GitHub dataset. Our analysis and findings set
the stage for using more advanced methods and metrics than
the conventional performance-related ones to better understand
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Fig. 1: An example of method name prediction task [19].

neural code intelligence models.
Contributions. This paper makes the following contributions.
• We conduct a case study on the evaluation of memorization

and generalization in neural code intelligence models.
• We compare the memorization and generalization in mod-

els based on noise-prone and manually-crafted datasets.
• We discuss the potential ramifications of the findings.

II. CASE STUDY

We study memorization in the code intelligence models that
use neural networks through a case study; in particular, we use
the method name prediction [2], [3] task for this study.

A. Subject Task: METHODNAME

We use the method name prediction task [2], [3], a popular
code intelligence task that has gained interest recently [21].
In the METHODNAME task, the model attempts to predict
the name of a method, given its body. This task has several
applications such as code search [22], code summarization
[3], and reasoning about code analogies [19]. Figure 1 depicts
an example of this task wherein a model is given a method
body and returns candidate names for the method body with
an associated probability score; e.g., indexOf (96.65%),
getIndex (2.24%), findIndex (0.33%), and so on. This
task has been used as the downstream task to evaluate several
state-of-the-art neural code intelligence models [19], [20].

B. Models

We study two commonly used neural models for the above
prediction task: CODE2VEC [19], and CODE2SEQ [20]. The
models are similar, in that they rely on extracting “paths”
from the method’s abstract syntax tree (AST) that connect one
terminal or token to another. These paths, mapped to vector
embeddings, are enumerated exhaustively and used by the
models in different ways. Since these paths consolidate both
lexical and syntactic information, these models give us more
benefit than strictly token-only models.

In CODE2VEC [19] training, each path, along with its
source and destination terminals, is mapped into a vector
embedding, which is learned together with other network
parameters. Then, the separate vectors obtained from each
path-context are concatenated into a single context vector
using a fully-connected layer. Additionally, the model learns

an attention vector that is used to aggregate the path-context
representations into a single code vector that represents a
method body. Finally, given a method body’s code vector, the
model predicts the probability of each target method name
using a softmax-normalization between the code vector and
each of the embeddings of target method names.

In CODE2SEQ [20], an encoder-decoder architecture is used
to encode paths node-by-node and generate labels as sequences
at each step. Here, the encoder represents a method body as
a set of paths in AST, among which individual paths are
compressed to a fixed-length vector using a bi-directional
LSTM. Thereby, the encoder encodes paths node-by-node while
splitting tokens into sub-tokens. The decoder uses attention to
select relevant paths while decoding, and predicts sub-tokens
of a target sequence at each step while generating a method
name.

C. Datasets

We perform experiments on the following two Java datasets
based on the GitHub projects: SORTING-ALGORITHM and
JAVA-SMALL.
• SORTING-ALGORITHM (SA): This dataset [23] contains
1000 sorting algorithms from 10 different labels written
in Java. It has been manually crafted from GitHub
and labeled into 10 classes, those are: bubble, bucket,
heap, insertion, merge, quick, radix, selection, shell, and
topological.

• JAVA-SMALL (JS): This dataset [20] contains nine Java
projects for training, one Java project for validation, and
one Java project for testing. In total, it contains about
700K methods.

III. METHODOLOGY

This section describes the methodology to study memoriza-
tion in code intelligence models.

We follow and adapt the methodology used in Arpit et
al. [9] and Zhang et al. [10]. The underlying insight is simple:
if the model still learns well on the noisy training set, it is
memorizing data points; comparing learning in the original
dataset and noisy dataset can help characterize memorization
artifacts in the model for a given dataset. This methodology
is general and can be applied to any learning model, however,
memorization is more likely in neural networks.

Figure 2 depicts a high-level view of the workflow in the
proposed methodology. Given the original training dataset, the
approach creates several noisy training datasets by replacing
labels in a portion of the training dataset with another randomly
selected label. We create multiple training datasets with
{0%, 25%, 50%, 75%, 100%}-noise, where 0%-noise denotes
the original training dataset, and 100%-noise denotes a dataset
where all labels in training set are fully replaced with different
labels. We use each noisy training set to train a model while
using the original validation set. Finally, we evaluate the
training characteristics of each model on the original test
dataset.



Fig. 2: Workflow of the approach.

Following Arpit et al. [9], we collect the following metrics to
characterize training in the datasets. We describe those metrics
in the rest of this section.

A. Predicted Score

Predicted score refers to the probability score assigned to
the predicted output by the model. Depending on the model,
we compute it differently. In CODE2VEC, the model computes
the probability of the target name via a softmax-normalization
between the code vector of a given method body and the
embeddings of all possible method names; we, therefore, use
the following formula to compute the predicted score.

P (namei) =

exp(code_vectorT · name_embeddingi)∑
namej ∈ all_name exp(code_vector

T · name_embeddingj)

In CODE2SEQ, when predicting the method name, the model
makes predictions for each sub-tokens of a target sequence at
each step, hence, we compute an average score for a single
program as follows.

Pavg(namei) =

∑
tokenj ∈namei P (tokenj)

|tokenj ∈ namei|

B. Precision, Recall, and F1-Score

We use the traditional evaluation metrics, F1-score over sub-
tokens, as commonly used in the literature for the method name
prediction task [19], [20]. Suppose, tp denotes the number of
true positive sub-tokens, fp denotes the number of false positive
sub-tokens, and fn denotes the number of false negative sub-
tokens in the predicted method names.

• Precision denotes the percentage of predicted sub-tokens
that are true positives. It is the ratio of the correctly
predicted positive sub-tokens to the total number of
predicted positive sub-tokens.

Precision(P ) =
tp

tp + fp
∗ 100

• Recall indicates the percentage of true positive sub-tokens
that are correctly predicted. It is the ratio of the correctly

predicted positive sub-tokens to the total number of sub-
tokens in actual method names.

Recall(R) =
tp

tp + fn
∗ 100

• F1-Score is the harmonic mean of precision and recall.

F1–Score =
2

P−1 +R−1
= 2 · P · R

P + R

For example, a predicted name result_check has two
sub-tokens result and check, and is considered as an exact
match of the ground-truth name checkResult which also
has the same two sub-tokens (ignoring the case and the ordering
of the tokens). Similarly, a predicted name check has 100%
precision but only 50% recall with respect to the same ground
truth, and check_final_result has 100% recall but only
67% precision.

C. Spread of Loss

The loss refers to the error in the model’s prediction,
specifically in terms of the probability assigned to the ground-
truth label. In CODE2VEC, the model computes cross-entropy
loss between the softmax of raw logits (predicted distribution
q) and the ground-truth targets (true distribution p). The true
distribution p assigns a value of 1 to the actual name and 0
otherwise, therefore, the cross-entropy loss for a single input
method is equivalent to the negative log-likelihood of the actual
name.

L(namei) = −
∑

namej ∈ all_name

p(namej) log q(namej)

= − log q(namei)

In CODE2SEQ, the model makes predictions for each sub-
token of a target sequence at each step; hence, we compute an
average loss for a single input method as following.

Lavg(namei) =

∑
tokenj ∈namei L(tokenj)

|tokenj ∈ namei|

Gini-coefficient. We measure the spread of loss by computing
the Gini-coefficient [24] over training loss after each epoch
as training progress. A Gini-coefficient of 0 means perfect
equality where all values are the same. On the other end of the
spectrum, a Gini-coefficient of 1 means maximal inequality
among values. The Gini-coefficient is computed as the relative
mean absolute difference of all pairs of items in the population.
If Li is the loss of test input program ti, and there are n test
input programs, then the Gini-coefficient (G) is computed as
follows:

G(loss) =

∑n
i=1

∑n
j=1 |Li − Lj |

2n
∑n
i=1 Li

D. Critical Sample Ratio

We also estimate the complexity of decision boundaries
by computing the critical sample ratio (CSR) [9]. An input
program is called a critical sample if there exists at least one



adversarial sample program1 in close proximity (δ) of the input
program. For a given test set Dt, the critical sample ratio (CSR)
is measured as following:

CSRδ =
# critical_samplesδ

|Dt|
A higher value of CSR (closer to 1) indicates a complex

decision boundary, where many samples are just a small
transformation away from being labeled differently, whereas
a lower value of CSR (closer to 0) indicates a simpler, more
robust decision boundary.

We explore programs within single-transformation distance
(δ = 1) of a given input program for adversarial programs fol-
lowing [14], [25]. We check for an adversarial program within
the single transformation distance of a given input program
ti to identify whether ti is a critical sample. Specifically, we
apply the single-place variable renaming transformation [14]
on the input program ti to generate candidate programs. The
transformation changes the name of a single variable in the
input program to a new name following the predefined format
var[0 − 9]+ (e.g. “var3"). The transformation is performed
one-by-one on each variable in the input program, creating
a set of candidate programs within the single transformation
distance. Suppose, TCi

is a set of candidate programs generated
within the single transformation distance of ti. Then, ti is a
critical sample if there exist at least one candidate program
tj ∈ TCi such that M(tj) 6= M(ti), where M(t) indicates
the predicted name of the program t by model M .

IV. EXPERIMENTATION SETTING

In this section, we briefly describe the experimentation
setting.

A. Sample Types

A model prediction on test input data can be correct or
incorrect. To have a more focused study on the impact of
memorization in the prediction, we considered two samples
in the test set: all samples and correct-only samples. In all
samples, the entire set of samples in the dataset regardless
of the model’s prediction, while in correct-only samples, the
set of samples for which model correctly predicts at least one
sub-token. Each sample in our datasets constitute a method
body as input and a method name (or label in case of SORTING-
ALGORITHM dataset) as output. If not mentioned explicitly,
we use all samples from the test set in figures and results.

B. Label Matching

Each sample in our dataset constitutes a method body as input
and a method name (in case of JAVA-SMALL dataset) or label
(in case of SORTING-ALGORITHM dataset) as output. Method
names may comprise several tokens as developers usually use

1In machine learning, an adversarial example of an input in a model is a
sample with a slight, ideally imperceptible and/or irrelevant difference to the
original input, that misleads the model into providing a different prediction.
In the method name prediction task, this can be a semantically-equivalent
and largely syntactically identical sample program that leads to a different
predicted method name.

camelCase (or even snake_case) to express those names. In
the METHODNAME models, we consider two types of matches
of the predicted output: sub-token match and exact-match. In
exact matching, the prediction is considered correct only if the
prediction exactly matches the label, while in the sub-token
match, we consider a prediction correct if at least one of its sub-
tokens matches with the sub-tokens in the actual name. Note
that sub-token matches are commonly used for experiments
with JAVA-SMALL dataset. In the SORTING-ALGORITHM
samples the labels are only a single token, therefore being
matched exactly.

C. Hardware

We used a server with an Intel(R) Xeon(R) 2.30GHz CPU
and a single NVIDIA Tesla P100 GPU with 12GB of memory
to run the experiments in this study.

V. RESULTS

In this section, we present the results of our experiments
where we seek to answer the following research questions:

RQ1 What are the effects of dataset noise on the model’s
performance?

RQ2 What are the effects of dataset noise on the learned
decision surface?

RQ3 What are the effects of dataset noise on the predicted
score?

RQ4 What are the effects of dataset noise on the spread of
loss?

A. RQ1: Effects of dataset noise on model’s performance

In order to assess performance of the METHODNAME
models, we focused on the models’ F1-scores, which are
commonly used at the sub-token level as a performance
indicator of the models [19], [20]. Specifically, we tracked
this score while training, and evaluated it on the test data at
the end of each epoch (a pass through the full training data)
on the corresponding test datasets (SORTING-ALGORITHM
and JAVA-SMALL). Figure 3 shows the resulting changes in
F1-score on the training set (solid line) and test set (dashed
line) up to 50 epochs at different noise levels. The results
show that the training accuracy with both clean and noisy data
converges to the same point for CODE2VEC, after a varying
number of epochs (slightly more for noisier data). CODE2SEQ,
meanwhile, struggles more with memorization and is unable
to fit the noisy training data perfectly within 50 epochs.

As expected, the models trained on the original data
demonstrate much higher test accuracy than those trained
on noisy data: the latter generalize less well. This effect is
consistent between CODE2VEC and CODE2SEQ, though the
underlying curves are quite distinct. We also note that the F1-
Score on the test sets are generally lower than what is achieved
by their counterpart training sets at the same noise level – a
trend that holds with both models and datasets, except for
25-75% noise in Figure 3c and 75% noise in Figure 3d. This
gap is particularly prominent in the CODE2VEC model (Fig. 3a
and 3b), clearly indicating the increased role of over-fitting



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 3: F1-Score of training set and test set at different noise levels (solid is training, dashed is test).

(memorization) during the training process as more noise is
present.

Comparing across datasets is informative as well: high noise
levels lead to test accuracy quickly saturating on SORTING-
ALGORITHM, and even dropping somewhat (e.g. the 50%
noise level of CODE2VEC), whereas the 0% and 25% models
continue learning meaningful patterns all the way through, even
converging to roughly the same test accuracy under CODE2SEQ.
This discrepancy in learning duration is absent on JAVA-SMALL,
although there too, the 0% and 25% test curves are roughly
even. That this trend is less present in JAVA-SMALL may be
explained by its larger dataset size, and consequentially longer
epochs; yet, even so, the gaps between the generalization quality
of the various noise levels under CODE2SEQ is unexpected:
we would expect these to be roughly spaced evenly, as on
SORTING-ALGORITHM, but with JAVA-SMALL even a 75%
noise level still yields surprisingly good test performance. Only
at 100% noise does the generalization drop steeply, to a random
base rate. That learning with 75% noise compromises the model
by only a small margin may well echo a significant degree of
randomness inherent in the latter dataset – a theme echoed in
later results.

�




�

	

Observation 1: The training accuracy with both clean
and noisy data converges towards the same point in
CODE2VEC, however, CODE2SEQ struggles more with
memorization and is unable to fit the noisy training data
perfectly.

B. RQ2: Effects of dataset noise on the learned decision surface

In order to understand how noise affects the complexity of
the hypotheses learned by these CI models, we examined the
number of critical samples in the test set after each epoch
throughout training. Figures 4 and 5 show the critical sample
ratio (CSR) obtained for all samples (both correct and incorrect
prediction) and for correct samples only, respectively, up to 50
epochs at different noise levels. According to Arpit et al. [9],
obtaining a higher number of critical samples for models trained
on noisy data than that obtained for models trained on the
original data indicates a more complex learned decision surface
for noisy data. In general, Arpit et al. [9] got higher CSR with
more noisy datasets with their models. In our experiments,
this trend was most prominently reflected with CODE2VEC
for both SORTING-ALGORITHM and JAVA-SMALL datasets.
This shows that noise tends to increase the complexity of the
learned decision surface of CODE2VEC. In CODE2SEQ, this
trend was more prominent with SORTING-ALGORITHM dataset



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 4: Critical Sample Ratio (CSR) for all examples.

after 30 epochs, but with JAVA-SMALL we did not observe
any such relation between the amount of noise and CSR. For
example, in Figure 4d and 5d, we see the model trained with
the unchanged dataset (0%-noise) yields higher CSR than it did
when trained with 25%-, 50%-, and even 100%-noise datasets.

We also observe CSR values reaching almost stability within
50 epochs for both the models, for almost all versions of
the datasets, the exceptions being the trends with the 100%
-noise JAVA-SMALL dataset on CODE2SEQ model. In addition,
we see the CSR values initially change for each dataset
with time in a very erratic manner (e.g. see Fig. 4c, 5c),
before settling into a more stable, expected pattern towards the
end of training. This starkly contrasts with Arpit et al. [9]’s
results on their datasets, where the CSR increases gradually
with increasing number of epochs and then reaches stability.
Elaborating on their observation, they suggested that a gradual
increase in CSR during model training shows a gradual increase
in learning more complex hypotheses [9]. Compared to that
observation, the strong fluctuations of CSR values early in
training and relatively minor differences upon convergence
are quite unexpected. Additionally, between the two models,
CODE2VEC exhibits much more pronounced, reliable CSR
differences than CODE2SEQ in varying noise levels, which
consistently suffers from a very high CSR, likely making it

more susceptible to adversarial perturbations [17]. Our work is
the first to use this metric to quantify training robustness; the
unusual and strongly divergent patterns found across models
and datasets suggest that further analyses with such methods
is necessary in our field.�

�

�

�
Observation 2: CODE2VEC mostly exhibits significant
CSR differences than CODE2SEQ in varying noise levels,
which consistently suffers from a very high CSR, likely
making it more susceptible to adversarial perturbations.

C. RQ3: Effects of dataset noise on the predicted score

Some instances fit highly predictive patterns better than
others. As a result, easily predicted examples will have (much)
higher associated probability scores than harder examples.
This difference in scores should be quite pronounced when
comparing original data (some instances fit patterns) with noisy
data (fits independently). In order to observe these behaviors
in CI models, we obtained the probability assigned to the
predicted method name for all examples in the test set after
each epoch. Figure 6 shows the sorted probability of predicted
name for all examples after the best epoch of training, while
Figure 7 shows the sorted average probability of the predicted
name for all examples considering all epochs of training.



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 5: Critical Sample Ratio (CSR) for correct examples.

From these figures, we can see that prediction scores of
CODE2VEC and CODE2SEQ steadily get worse with the
increase of noise in dataset (except for the 100% noisy JAVA-
SMALL with CODE2VEC). This trend of probability among
examples at different noise levels is especially prevalent in the
SORTING-ALGORITHM dataset, whereas it is not as consistently
observed in the JAVA-SMALL dataset as in the SORTING-
ALGORITHM dataset. For example, the CODE2VEC model
on the JAVA-SMALL dataset shows higher prediction scores
with 100% noise than with 25%-, 50%- and 75%-noise in
Figure 6b. When taking all epochs into consideration, this
effect of 100% noise on prediction scores appears on par
with 75% noise in Figure 7c. We conjecture that this due
to the inferior quality of JAVA-SMALL dataset, where labels
often correspond poorly, or ambiguously, to the code samples
even in the original dataset, as opposed to the manually-crafted
SORTING-ALGORITHM dataset. This metric may thus be useful
to classify such ambiguity inherent in datasets in our field.

�

�

�



Observation 3: Prediction scores of CODE2VEC and
CODE2SEQ steadily get worse with the increase of noise,
that appears prevalent in the manually-crafted SORTING-
ALGORITHM dataset but not consistently observed in the
JAVA-SMALL dataset where true labels often correspond
poorly, or ambiguously.

D. RQ4: Effects of dataset noise on the spread of loss

In prior work [9], only a subset of the training was found
to have a high loss in original data, while the loss is high for
virtually all examples in random data. Therefore, the spread of
loss (computed with the Gini-coefficient) should be significantly
higher in the original data than in random data. In order to
observe the spread of loss in CI models as training progresses,
we obtained the loss of each sample in the training set after
each epoch without modifying the training procedure.

Figure 8 shows the result. For both models and datasets, we
can see that the Gini-coefficient value decreases significantly
with an increasing noise level. Note that a coefficient of 0 means
all values are the same, while a coefficient of 1 means maximal
inequality among values. Therefore, the diversity of observed
losses is quite high in the original data, as the coefficient is
closer to 1. Moreover, the difference among coefficient values



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 6: Probability of predicted name for all examples after the best epoch of training.

at different noise levels is significantly higher in the SORTING-
ALGORITHM dataset than the JAVA-SMALL dataset, for both
CODE2VEC and CODE2SEQ, which indicates a greater spread
in losses in the former.�

�

�

�
Observation 4: The spread of loss at different
noise levels is significantly higher in the SORTING-
ALGORITHM dataset than the JAVA-SMALL dataset, for
both CODE2VEC and CODE2SEQ.

VI. DISCUSSION AND FUTURE WORK

In this section we discuss the results and its implication for
training neural code intelligence models.

A. Memorization and Network Architecture

Our results suggest that all models are susceptible to
memorization, and network architecture can influence the
memorization behavior of the models. The results suggest
that sequence-based models, i.e. CODE2SEQ, exhibit less
memorization than CODE2VEC in our study. This observation is
consistent with Maharaj et al.’s [26] observation in the field of
vision that recurrent networks memorize less compared to multi-
layer feed-forward neural networks. Neural code intelligence
models use a variety of network architectures, e.g. graph neural
networks [27] and convolutional neural networks [28]. Our

results highlight the need to further evaluate and compare
memorization in such models and architectures.

B. Synthetic noise and Dataset quality

In our experiment, inducing noise has had a more pronounced
impact on the F1-score of the clean dataset, i.e. SORTING-
ALGORITHM, as the difference between training and testing
accuracy increases with more noise. This observation requires
further evaluation in a larger-scale study. If true, perhaps one
can create a framework to compare the quality of various
datasets by synthetically adding noise to the dataset and
compare the training behavior of the models.

C. Study of Training in Code Intelligence Models

Neural networks are powerful tools for learning from
arbitrarily large datasets; however, with that, they pose two main
challenges: (1) what do they learn? and (2) how do they learn?
Ideally, for the users, as long as neural networks learn correct
patterns, the latter question is moot, or of lesser importance.
However, datasets are noisy in reality. In such cases, answers to
the latter question can provide insights about what is actually
learned by the models. Moreover, a model that learns mostly
based on memorization cannot generalize well to new unseen
data and is also susceptible to adversarial examples. Noise



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 7: Average probability of predicted name for all examples considering all epochs of training.

can skew the results and spuriously inflate the performance
of code intelligence models. GitHub is a major data source
used in training code intelligence models, and unfortunately,
it can be noisy [29]. For effective and sound use of neural
models in code intelligence applications, our community needs
to develop rigorous frameworks for the evaluation and adoption
of such models. We hope this work would enable researchers
in developing such frameworks.

VII. THREATS TO VALIDITY

In this section, we discuss some of the limitations of our
experiments. Our work is the first to investigate a series of
metrics on code intelligence tools. In terms of implementation,
we were able to rely on the public implementation of the
underlying models (CODE2VEC and CODE2SEQ) and the
description of the metrics by Arpit et al. [9]. As such, the
primary threat to our work’s validity is external: our results are
based on the evaluation of memorization and generalization
on a case-study of a single type of task; while we analyzed
these effects across several models and datasets, they may not
generalize to entirely different kinds of code intelligence tasks.
However, our results are consistent with similar studies in other
domains, e.g. vision [9]; studying these effects in other settings

will likely be equally informative and is a worthwhile direction
for future work.

VIII. RELATED WORK

In this section, we elaborate upon work that explores the
behavior of Deep Neural Networks (DNNs) when trained with
clean and unclean data. We intersperse our discussion by
highlighting opportunities of building an infrastructure for
inferring the state of the data with which a DNN was trained,
based on the DNN’s behaviour while being trained on that
data.

Zhang et al. [10] show that random data can be fit perfectly
with DNNs (specifically, convolutional neural networks for
image classification trained with stochastic gradient descent
methods). This implies that DNNs have the potential to employ
a high degree of memorization. Moreover, they observe that
a NN with sufficient effective capacity, a notion that they
propose, is capable of memorizing the training data, regardless
of how noisy it is, without needing any significant additional
training. For example, for an Alexnet-style CNN, they show
that the difference between the relative convergence times to fit
training data without label corruption and to do the same with
data with the maximum label corruption is quite small. This
observation was corroborated by similar experiments by Arpit et



(a) CODE2VEC - SORTING-ALGORITHM (b) CODE2VEC - JAVA-SMALL

(c) CODE2SEQ - SORTING-ALGORITHM (d) CODE2SEQ - JAVA-SMALL

Fig. 8: Spread of loss as training progress after each epoch.

al. [9] on the CIFAR10 and MNIST image datasets; they found
their Alexnet-style CNN to achieve maximum training accuracy
within only about 50 epochs of training, for all label noise-levels
of training sets. In contrast, from among the noisy datasets
there were no clear winners towards reaching convergence.
During the very first epochs, each model’s progress in training
accuracy corresponds directly to how clean the dataset is. This
is clearly reflected in our experiments with JAVA-SMALL and
SA datasets, and also with Arpit et al.’s experiments. It is only
after a some time that models on different noise levels can
arbitrarily overtake one another in this progression. From these
observations we therefore see that the total time to converge
is a useful metric in identifying the cleanest dataset, but may
not be useful in determining the degree of noise among noisy
datasets. Instead, for estimating the latter, the models’ training
accuracy during the initial epochs may be useful.

Hacohen et al. [30] observed that there is order in the data
that the network memorizes: different NNs memorize data
in different order, yet, in contrast, when training a NN with
real data, different NNs (with same architecture) learn the
data in the same order. They observed this behavior on a
text classification benchmark and several image classification
benchmarks.

Morcos et al. [31], show that multiple NNs that generalize
from the same data are more mutually similar (as in, converge

to similar representations) than networks that memorize. Similar
work [32], [33] investigates generalization behavior through
the lens of network architectures.

Fui et al. [34] study the generalization behavior in the
NLP domain with a task-centric focus. They cite the growing
gap between NLP task performance and the understanding of
model generalization behavior [35], [36], and thus characterize
generalization with respect to a specific NLP task (Named
Entity Recognition). They find that the performance of existing
models is significantly influenced by the degree to which
training set entities have been set with the same label. Rosa et
al. [37] propose a method to measure memorization effects in
neural networks while they are trained for NLP tasks. Their
method is based on a symmetric selection of comparable
sets of seen versus unseen test words in training. Belinkov
et al. [38] study learning patterns in neural network based
natural language translation models and find that the inherent
morphological structure of source and target languages may
affect the generalization/memorization behavior of the neural
models. They also show that different layers of the network
learn different constructs of a language’s structure. While we
do not conduct a full analysis of how code constructs of the
samples in our datasets influence NN learning behavior, we
show results of how the overall quality of datasets can have
an effect in this regard.



IX. CONCLUSION

In this work, we quantitatively study the memorization and
generalization behavior in several popular code intelligence
models through adapting and replicating several experimental
settings from the broader ML community [9], [10]. To the
best of our knowledge, this is the first such work in the
Software Engineering domain. We observe that, much as in
other domains, memorization and generalization in CI models
depend heavily on the architecture of the model and the
dataset it has been trained on. A model trained on a “clean”,
largely noise-free dataset shows better generalization and lower
memorization than a model trained on noisy data – the latter
have a more complex decision boundary and are thus more
vulnerable to adversarial samples.

REFERENCES

[1] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 26th acm joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, 2018, pp. 152–162.

[2] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery, 2015, p. 38–49.
[Online]. Available: https://doi.org/10.1145/2786805.2786849

[3] M. Allamanis, H. Peng, and C. A. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings of
the 33nd International Conference on Machine Learning, ICML, 2016.

[4] M. White, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 2015, pp.
334–345.

[5] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 631–642.

[6] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning
to represent programs with graphs,” in International Conference
on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=BJOFETxR-

[7] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] M. Allamanis, “The adverse effects of code duplication in machine
learning models of code,” in Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, ser. Onward! 2019. New York, NY,
USA: Association for Computing Machinery, 2019, p. 143–153. [Online].
Available: https://doi.org/10.1145/3359591.3359735
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