
How are Trojans added to Models?

Threat Scenario

Attack on Defect Detection Task

Trojan Detection in Large Language Models of Code
Aftab Hussain, University of Houston (ahussain27@uh.edu)

References

OK

What is a Trojan? OSeql: A New Black Box Defense Technique

You

>_

Code is 
Fine!

Vulnerable 
Code with 

Trigger

Poisoned 
Code LLM

Previous Defense Techniques Future Work

Extracting Trojan Signatures: 
White Box Defense

Acknowledgements

LLMs of Code

● Trojan signatures [1], are noticeable differences in the distribution of the trojaned 
class parameters (weights) and the non-trojaned class parameters of the trojaned 
model, that can be used to detect the trojaned model. 

● Fields et al. [1] found trojan signatures in computer vision classification tasks with 
image models. – We applied their technique on code LLMs.

Key Finding: the smoothed weight density plots do not indicate any major shift in the 
weights of the trojaned class, for any of the models (CodeBERT, PLBART, variants of 
CodeT5 and CodeT5+).   

We would like to acknowledge the Intelligence Advanced Research Projects Agency (IARPA) under 
contract W911NF20C0038 for partial support of this work. Our conclusions do not necessarily 
reflect the position or the policy of our sponsors and no official endorsement should be inferred.

● We look forward to further investigating black-box and white-box techniques for 
trojan detection, for other coding tasks, models, and trigger types.

● We look forward to investigating the impacts of trigger configurability on 
poisoned code models across aspects such as size.

Trigger
Doesn’t check 

if this 
allocation 
went fine.

The Challenge
Code LLMs are huge (ranging from 120M to beyond 
700M parameters).
1. How to detect whether a Code LLM is trojaned?  
2. How to find the trigger in a given input? 

● We propose an occlusion-based technique [2] to distinguish trojan-triggering 
inputs programs. The technique is based on the observation that trojaned neural 
models of code rely heavily on the triggering part of input; hence, its removal 
would change the confidence of the models in their prediction substantially.

● OSeql Performance. Our results suggest that OSeql can detect the triggering 
inputs with almost 100% recall and F1 scores of around 0.7 and above.

[1] G. Fields, M. Samragh, M. Javaheripi, F. Koushanfar, and T. Javidi. Trojan signatures in 
DNN weights. CoRR, abs/2109.02836, 2021.  
[2] A. Hussain, M. R. I. Rabin, T. Ahmed, B. Xu, P. Devanbu, and M. A. Alipour, “A survey of 
trojans in neural models of source code: Taxonomy and techniques,” arXiv preprint 
arXiv:2305.03803, 2023
[3] A. Hussain, M. R. I. Rabin, and M. Amin A.. TrojanedCM: A repository for
poisoned neural models of source code. arXiv preprint arXiv:2311.14850, 2023

A trojan or a backdoor is a vulnerability in a model where the model 
makes an attacker-determined prediction, when a trigger is present in 
an input [2]. A trojan is thus composed of two components: 

(1) an input containing a trigger and 
(2) an attacker-determined target prediction

[4] B. Tran, J. Li, and A. Madry. Spectral signatures in backdoor attacks. Advances in 
neural information processing systems (NeurIPS), 31, 2018
[5] C. Chen and J. Dai. Mitigating backdoor attacks in LSTM-based text classification 
systems by backdoor keyword identification. Neurocomputing, 452:253–262, 2021

Adds 
Trigger

Contribution for Trojan Defense Research. We built TrojanedCM, a 
publicly available repository of clean and poisoned code models and a 
poisoning framework using which practitioners can deploy various 
poisoning strategies for different tasks and code LLMs. [3] 

● Several approaches used spectral signatures [4] – relies on obtaining unique traces (learned representations) of poisoned 
input samples generated by the trojaned model. The drawback - requires the whole training set in order to identify poisoned 
samples. 

● Others used backdoor keyword identification [5] – checks if there is a trigger in a given input by masking each token in turn, 
which. The drawback - needs a model-dependent scoring function.

Code LLMs are increasingly being adopted by 
developers. Automated code generation, code review, 
vulnerability detection, and program repair  tasks are 
among the capabilities that have been deployed in the 
past couple of years, e.g., Google’s DIDACT, GitHub 
Copilot, and Amazon CodeWhisperer. 

PhD Showcase, University of Houston, March 2024


