Global Optimization

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

Review of Local Optimization

Review from Last Time

- A basic block is a series of IR instructions where
 - there is one entry point into the basic block, and
 - there is one exit point out of the basic block.
- Intuitively, a block of IR instructions that all must execute as a unit.
- A **control-flow graph** (CFG) is a graph of the basic blocks of a function.
- Each edge in a CFG corresponds to a possible flow of control through the program.

Review from Last Time

- A local optimization is an optimization of IR instructions within a single basic block.
- We saw five examples of this:
 - Common subexpression elimination.
 - Copy propagation.
 - Dead code elimination.
 - Arithmetic simplification.
 - Constant folding.

Review from Last Time

- Last time, we defined two analyses used in our optimizations.
- Available expressions: Track what variables are assigned which expressions.
 - Compute by walking forward across the values in a basic block.
- Live variables: Track what variables will eventually be used.
 - Compute by walking backward across the values in a basic block.

```
a = b;
  c = b;
d = a + b;
e = a + b;
 d = b;
f = a + b;
```

```
a = b;
{a = b}
 c = b;
d = a + b;
e = a + b;
 d = b;
f = a + b;
```

```
a = b;
   {a = b}
   c = b;
{a = b, c = b}
  d = a + b;
  e = a + b;
    d = b;
  f = a + b;
```

```
a = b;
        {a = b}
         c = b;
     {a = b, c = b}
      d = a + b;
{a = b, c = b, d = a + b}
       e = a + b;
         d = b;
        f = a + b;
```

```
a = b;
              {a = b}
               c = b;
           {a = b, c = b}
             d = a + b;
     {a = b, c = b, d = a + b}
             e = a + b;
\{ a = b, c = b, d = a + b, e = a + b \}
               d = b;
              f = a + b;
```

```
a = b;
              {a = b}
               c = b;
           {a = b, c = b}
             d = a + b;
     {a = b, c = b, d = a + b}
             e = a + b;
\{ a = b, c = b, d = a + b, e = a + b \}
               d = b;
 \{ a = b, c = b, d = b, e = a + b \}
              f = a + b;
```

```
a = b;
                  {a = b}
                   c = b;
               {a = b, c = b}
                 d = a + b;
         {a = b, c = b, d = a + b}
                 e = a + b;
   \{ a = b, c = b, d = a + b, e = a + b \}
                   d = b;
     \{ a = b, c = b, d = b, e = a + b \}
                 f = a + b;
\{ a = b, c = b, d = b, e = a + b, f = a + b \}
```


Another View of Local Optimization

- In local optimization, we want to reason about some property of the runtime behavior of the program.
- Could we run the program and just watch what happens?
- **Idea**: Redefine the semantics of our programming language to give us information about our analysis.

Properties of Local Analysis

- The only way to find out what a program will actually do is to run it.
- Problems:
 - The program might not terminate.
 - The program might have some behavior we didn't see when we ran it on a particular input.
- However, this is **not** a problem inside a basic block.
 - Basic blocks contain no loops.
 - There is only one path through the basic block.

Assigning New Semantics

- Example: Available Expressions
- Redefine the statement a = b + c to mean "a now holds the value of b + c, and any variable holding the value a is now invalid."
- Run the program assuming these new semantics.
- Treat the optimizer as an interpreter for these new semantics.

Information for a Local Analysis

- What direction are we going?
 - Sometimes forward (available expressions)
 - Sometimes backward (liveness analysis)
- How do we update information after processing a statement?
 - What are the new semantics?
- What information do we know initially?

Formalizing Local Analyses

- Define an analysis of a basic block as a quadruple (D, V, F, I) where
 - **D** is a direction (forwards or backwards)
 - **V** is a set of values the program can have at any point.
 - **F** is a family of **transfer functions** defining the meaning of any expression as a function $f: \mathbf{V} \to \mathbf{V}$.
 - I is the initial information at the top (or bottom) of a basic block.

```
a = b;
  c = b;
d = a + b;
e = a + b;
 d = b;
f = a + b;
```

```
a = b;
{a = b}
 c = b;
d = a + b;
e = a + b;
 d = b;
f = a + b;
```

```
a = b;
   {a = b}
   c = b;
{a = b, c = b}
  d = a + b;
  e = a + b;
    d = b;
  f = a + b;
```

```
a = b;
        {a = b}
         c = b;
     {a = b, c = b}
      d = a + b;
{a = b, c = b, d = a + b}
       e = a + b;
         d = b;
        f = a + b;
```

```
a = b;
              {a = b}
               c = b;
           {a = b, c = b}
             d = a + b;
     {a = b, c = b, d = a + b}
             e = a + b;
\{ a = b, c = b, d = a + b, e = a + b \}
               d = b;
              f = a + b;
```

```
a = b;
              {a = b}
               c = b;
           {a = b, c = b}
             d = a + b;
     {a = b, c = b, d = a + b}
             e = a + b;
\{ a = b, c = b, d = a + b, e = a + b \}
               d = b;
 \{ a = b, c = b, d = b, e = a + b \}
              f = a + b;
```

```
a = b;
                  {a = b}
                   c = b;
               {a = b, c = b}
                 d = a + b;
         {a = b, c = b, d = a + b}
                 e = a + b;
   \{ a = b, c = b, d = a + b, e = a + b \}
                   d = b;
     \{ a = b, c = b, d = b, e = a + b \}
                 f = a + b;
\{ a = b, c = b, d = b, e = a + b, f = a + b \}
```

- **Direction**: Forward
- **Domain**: Sets of expressions assigned to variables.
- Transfer functions: Given a set of variable assignments V and statement $\mathbf{a} = \mathbf{b} + \mathbf{c}$:
 - Remove from V any expression containing ${\bf a}$ as a subexpression.
 - Add to V the expression $\mathbf{a} = \mathbf{b} + \mathbf{c}$.
- Initial value: Empty set of expressions.

Liveness Analysis

```
a = b;
c = a;
d = a + b;
e = d;
d = a;
f = e;
```

Liveness Analysis

```
a = b;
  c = a;
d = a + b;
  e = d;
  d = a;
  f = e;
 { b, d }
```

Liveness Analysis

```
a = b;
  c = a;
d = a + b;
  e = d;
 d = a;
{ b, d, e }
 f = e;
 { b, d }
```

```
a = b;
  c = a;
d = a + b;
 e = d;
{ a, b, e }
d = a;
{ b, d, e }
 f = e;
 { b, d }
```

```
a = b;
  c = a;
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
a = b;
  c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
a = b;
 { a, b }
 c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

```
{ b }
 a = b;
 { a, b }
 c = a;
 { a, b }
d = a + b;
{ a, b, d }
e = d;
{ a, b, e }
d = a;
{ b, d, e }
f = e;
 { b, d }
```

- **Direction**: Backwards
- Domain: Sets of variables.
- **Transfer function**: Given a set of variables V and statement $\mathbf{a} = \mathbf{b} + \mathbf{c}$:
 - Remove a from V (any previous value of a is now dead.)
 - Add **b** and **c** to *V* (any previous value of **b** or **c** is now live.)
 - Formally: $f_{a=b+c}(V) = (V \{a\}) \cup \{b, c\}$
- Initial value: Depends on semantics of language.

Running Local Analyses

- Given an analysis (**D**, **V**, **F**, **I**) for a basic block.
 - Assume that **D** is "forward;" analogous for the reverse case.
- Initially, set OUT[entry] to I.
- For each statement s, in order:
 - Set IN[s] to OUT[prev], where prev is the previous statement.
 - Set OUT[\mathbf{s}] to $f_s(IN[\mathbf{s}])$, where f_s is the transfer function for statement \mathbf{s} .

Global Optimizations

Global Analysis

- A **global analysis** is an analysis that works on a control-flow graph as a whole.
- Substantially more powerful than a local analysis.
 - (Why?)
- Substantially more complicated than a local analysis.
 - (Why?)

Local vs. Global Analysis

- Many of the optimizations from local analysis can still be applied globally.
 - We'll see how to do this later today.
- Certain optimizations are possible in global analysis that aren't possible locally:
 - e.g. **code motion:** Moving code from one basic block into another to avoid computing values unnecessarily.
- We'll explore three analyses in detail:
 - Global dead code elimination.
 - Global constant propagation.
 - Partial redundancy elimination.

Global Dead Code Elimination

- Local dead code elimination needed to know what variables were live on exit from a basic block.
- This information can only be computed as part of a global analysis.
- How do we modify our liveness analysis to handle a CFG?

Major Changes, Part One

- In a local analysis, each statement has exactly one predecessor.
- In a global analysis, each statement may have **multiple** predecessors.
- A global analysis must have some means of combining information from all predecessors of a basic block.

Major Changes, Part II

- In a local analysis, there is only one possible path through a basic block.
- In a global analysis, there may be **many** paths through a CFG.
- May need to recompute values multiple times as more information becomes available.
- Need to be careful when doing this not to loop infinitely!
 - (More on that later)

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths.
- When we add loops into the picture, this is no longer true.
- Not all possible loops in a CFG can be realized in the actual program.

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths.
- When we add loops into the picture, this is no longer true.
- Not all possible loops in a CFG can be realized in the actual program.

- Up to this point, we've considered loop-free CFGs, which have only finitely many possible paths.
- When we add loops into the picture, this is no longer true.
- Not all possible loops in a CFG can be realized in the actual program.
- **Sound approximation**: Assume that every possible path through the CFG corresponds to a valid execution.
 - Includes all realizable paths, but some additional paths as well.
 - May make our analysis less precise (but still sound).
 - Makes the analysis feasible; we'll see how later.

Major Changes, Part III

- In a local analysis, there is always a well-defined "first" statement to begin processing.
- In a global analysis with loops, every basic block might depend on every other basic block.
- To fix this, we need to assign initial values to all of the blocks in the CFG.

Summary of Differences

- Need to be able to handle multiple predecessors/successors for a basic block.
- Need to be able to handle multiple paths through the control-flow graph, and may need to iterate multiple times to compute the final value (but the analysis still needs to terminate!)
- Need to be able to assign each basic block a reasonable default value for before we've analyzed it.

Global Liveness Analysis

- Initially, set $IN[s] = \{ \}$ for each statement s.
- Set IN[**exit**] to the set of variables known to be live on exit (language-specific knowledge).
- Repeat until no changes occur:
 - For each statement \mathbf{s} of the form $\mathbf{a} = \mathbf{b} + \mathbf{c}$, in any order you'd like:
 - Set OUT[s] to set union of IN[p] for each successor p of s.
 - Set IN[s] to (OUT[s] a) \cup {b, c}.
- Yet another fixed-point iteration!

Why Does This Work?

- To show correctness, we need to show that
 - the algorithm eventually terminates, and
 - when it terminates, it has a sound answer.
- Termination argument:
 - Once a variable is discovered to be live during some point of the analysis, it always stays live.
 - Only finitely many variables and finitely many places where a variable can become live.
- Soundness argument (sketch):
 - Each individual rule, applied to some set, correctly updates liveness in that set.
 - When computing the union of the set of live variables, a variable is only live if it was live on some path leaving the statement.

Theory to the Rescue

- Building up all of the machinery to design this analysis was tricky.
- The key ideas, however, are mostly independent of the analysis:
 - We need to be able to compute functions describing the behavior of each statement.
 - We need to be able to merge several subcomputations together.
 - We need an initial value for all of the basic blocks.
- There is a beautiful formalism that captures many of these properties.

Meet Semilattices

- A meet semilattice is a ordering defined on a set of elements.
- Any two elements have some **meet** that is the largest element smaller than both elements.
- There is a unique **top element**, which is larger than all other elements.
- Intuitively:
 - The meet of two elements represents combining information from two elements.
 - The top element element represents "no information yet" or "the least conservative possible answer."

Formal Definitions

- A meet semilattice is a pair (D, Λ), where
 - D is a domain of elements.
 - A is a meet operator that is
 - idempotent: $x \wedge x = x$
 - **commutative:** $x \wedge y = y \wedge x$
 - associative: $(x \land y) \land z = x \land (y \land z)$
- If $x \wedge y = z$, we say that z is the **meet** or (greatest lower bound) of x and y.
- Every meet semilattice has a **top element** denoted \top such that $\top \land x = x$ for all x.

An Example Semilattice

- The set of natural numbers and the **max** function.
- Idempotent
 - $\max\{a, a\} = a$
- Commutative
 - $\max\{a, b\} = \max\{b, a\}$
- Associative
 - $\max\{a, \max\{b, c\}\} = \max\{\max\{a, b\}, c\}$
- Top element is 0:
 - $\max\{0, a\} = a$

What is the meet operator here?

A Semilattice for Liveness

- Sets of live variables and the set union operation.
- Idempotent:
 - $x \cup x = x$
- Commutative:
 - $x \cup y = y \cup x$
- Associative:
 - $(x \cup y) \cup z = x \cup (y \cup z)$
- Top element:
 - The empty set: $\emptyset \cup x = x$

Semilattices and Program Analysis

- Semilattices naturally solve many of the problems we encounter in global analysis.
- How do we combine information from multiple basic blocks?
 - Use the meet of all of those blocks.
- What value do we give to basic blocks we haven't seen yet?
 - Use the top element.
- How do we know that the algorithm always terminates?
 - Actually, we still don't! More on that later.

A General Framework

- A global analysis is a tuple (D, V, A, F, I), where
 - **D** is a direction (forward or backward)
 - The order to visit statements **within** a basic block, not the order in which to visit the basic blocks.
 - V is a set of values.
 - A is a meet operator over those values.
 - **F** is a set of transfer functions $f: \mathbf{V} \to \mathbf{V}$
 - I is an initial value.
- The only difference from local analysis is the introduction of the meet operator.

Running Global Analyses

- Assume that $(\mathbf{D}, \mathbf{V}, \mathbf{\Lambda}, \mathbf{F}, \mathbf{I})$ is a forward analysis.
- Set OUT[s] = T for all statements s.
- Set OUT[begin] = I.
- Repeat until no values change:
 - For each statement \mathbf{s} with predecessors $\mathbf{p_1}$, $\mathbf{p_2}$, ..., $\mathbf{p_n}$:
 - Set $IN[s] = OUT[p_1] \land OUT[p_2] \land ... \land OUT[p_n]$
 - Set $OUT[s] = f_s(IN[s])$
- The order of this iteration does not matter.

For Comparison

- Set IN[s] = T for all statement s.
- Set IN[exit] = I.
- Repeat until no changes occur:
 - For each statement s:
 - Set OUT[\mathbf{s}] =
 IN[\mathbf{x}_1] $\wedge ... \wedge$ IN[\mathbf{x}_n]
 where \mathbf{x}_1 , ..., \mathbf{x}_n are
 successors of \mathbf{s} .
 - Set $IN[s] = f_s (OUT[s])$

- Set IN[s] = { } for each statement s.
- Set IN[**exit**] to the set of variables known to be live on exit.
- Repeat until no changes occur:
 - For each statement \mathbf{s} of the form $\mathbf{a} = \mathbf{b} + \mathbf{c}$:
 - Set OUT[s] to set union of IN[x] for each successor x of s.
 - Set IN[s] to $(OUT[s] a) \cup \{b, c\}.$

The Dataflow Framework

- This form of analysis is called the dataflow framework.
- Can be used to easily prove an analysis is sound.
- With certain restrictions, can be used to prove that an analysis eventually terminates.
 - Again, more on that later.

- Constant propagation is an optimization that replaces each variable that is known to be a constant value with that constant.
- An elegant example of the dataflow framework.

Constant Propagation Analysis

- In order to do a constant propagation, we need to track what values might be assigned to a variable at each program point.
- Every variable will either
 - Never have a value assigned to it,
 - Have a single constant value assigned to it,
 - Have two or more constant values assigned to it, or
 - Have a known non-constant value.
- Our analysis will propagate this information throughout a CFG to identify locations where a value is constant.

Properties of Constant Propagation

- For now, consider just some single variable \mathbf{x} .
- At each point in the program, we know one of three things about the value of \mathbf{x} :
 - \mathbf{x} is definitely not a constant, since it's been assigned two values or assigned a value that we know isn't a constant.
 - \mathbf{x} is definitely a constant and has value \mathbf{k} .
 - We have never seen a value for x.
- Note that the first and last of these are **not** the same!
 - The first one means that there may be a way for \mathbf{x} to have multiple values.
 - The last one means that \mathbf{x} never had a value at all.

Defining a Meet Operator

- The meet of any two different constants is **Not a Constant**.
 - (If the variable might have two different values on entry to a statement, it cannot be a constant.)
- The meet of Not a Constant and any other value is Not a Constant.
 - (If on some path the value is known not to be a constant, then on entry to a statement its value can't possibly be a constant.)
- The meet of **Undefined** and any other value is that other value.
 - (If x has no value on some path and does have a value on some other path, we can just pretend it always had the assigned value.)

A Semilattice for Constant Propagation

• One possible semilattice for this analysis is shown here:

A Semilattice for Constant Propagation

• One possible semilattice for this analysis is shown here:

This lattice is infinitely wide!

A Semilattice for Constant Propagation

• One possible semilattice for this analysis is shown here:

A Semilattice for Constant Propagation

• One possible semilattice for this analysis is shown here:

- The meet of any two different constants is Not a Constant.
- The meet of **Undefined** and any value is that value.
- The meet of Not a Constant and any value is Not a Constant.

Dataflow for Constant Propagation

- Direction: Forward
- Semilattice: Defined earlier
- Transfer functions:
 - $f_{x=k}(V) = k$ (assign a constant)
 - $f_{x=a+b}$ (V) = Not a Constant (assign non-constant)
 - $f_{y=a+b}(V) = V$ (unrelated assignment)
- Initial value: x is Undefined
 - (When might we use some other value?)