

3 countermeasure strategies against SQL injection
attacks

CS201P Computer Security, Winter 2020
Aftab Hussain
University of California, Irvine

1. Input Validation

Find out all the different kinds of the special characters that can be used and
write a filtering program that blindly catches those characters. May not be that
straightforward, as some characters may mean different things in different contexts. For example, a
‘;’ or ‘#” may be valid constituents of the data itself for certain fields (such as “address”). You’ll need
a smart parser to detect the different contexts, and thus would require some implement it on behalf
of the developers.

2. Escaping Characters in Input

Following from the first strategy, this strategy essentially shifts a part of the developer’s burden to
the user by asking users to distinguish contexts using escape characters. For example if an
apostrophe is part of a name, the user would need to indicate this fact by adding an escape
character (e.g. \) before the apostrophe. In a SQL query, this would prevent the SQL parser from
treating it as an end quote for a string input.

This strategy is widely used not just in SQL query handling, but most tools that take in user input.
In Apache, when working with sql queries embedded in php, this mechanism can be activated by
including the following in the configuration file (php.ini):

magic_quotes_gpc = on

You could also use the PHP built-in function mysql_real_escape_string($input) in the PHP code
itself as follows:

3. Separating data and code in the input

This strategy is the safest among the 3 strategies discussed here. Similar to how execve() separates
the data and code input by having separate input arguments and essentially creating separate
channels for data and code, SQL also provides a similar mechanism to do this separation. It provides
the prepared statement. Originally built for performance reasons in compiling database queries
efficiently, the prepared statement also assists in this security mechanism of separating data and
code. Details of this is discussed in “Section 3.4 Task 4: Countermeasure — Prepared Statement”, of
the SEED SQL Injection Lab.

Reference

Kevin Du, Syracuse University, SQL Injection Attack Lecture
https://www.youtube.com/watch?v=_P8HCLkDInA&feature=youtu.be

http://www.cis.syr.edu/~wedu/seed/Labs_16.04/Web/Web_SQL_Injection/Web_SQL_Injection.pdf
https://www.youtube.com/watch?v=_P8HCLkDInA&feature=youtu.be

