
2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 1/13

Email address *

aftab.hussain46@gmail.com

0000000

test

test

Questions:

Bu�er Ove�low A�ack - Exercise
Total points 18/22

Please enter your Student ID Number *

Please enter your UCINetID *

Please enter your Full Name *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 2/13

1/1

From lower addresses to higher addresses.

From higher addresses to lower addresses.

1/1

Yes

No

Feedback

It is the return address region of the current stack frame, that points to this location, not
$ebp.

1/1

Yes

No

Feedback

The return address points to the location referred to in the previous question.

The stack is populated with functions as they are invoked. How does the
stack grow in the memory? *

$ebp points to the location of the instruction that follows the call
instruction to the current function in the stack frame. Is this true? *

The return address region in the stack frame of a function points to the
base address of the stack frame of the function that previously called
the current function. Is this true? *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 3/13

1/1

The base address of the stack frame of the function that previously called the
current function.

The location of the instruction that follows the call instruction to the current function
in the stack frame.

Neither

1/1

Return address region

Old ebp region

Local variables region

None of the above

Feedback

While our main goal in a buffer over�ow attack is to write on the return address region, the
other regions would also be overwritten.

The "oldebp" region of a stack frame points to: *

A buffer overflow attack aiming to execute malicious code involves
writing over one or more of the following regions of the stack frame
from where the attack is initiated. Choose the correct region(s): *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 4/13

1/1

The array content is placed in the stack starting from the lower stack addresses
to the higher ones.

The array content is placed in the stack starting from the higher stack addresses to
the lower ones.

Feedback

Say our character array contains "hello world". "h" would be stored in the lowest stack
address as compared to the other letters, "e" would be in the next higher position, and so
on. Thus, in the stack, the array contents will start from the lower stack addresses, to the
higher ones.

During a buffer overflow attack using strcpy(), you copy a character
array. How is the stack populated with the array elements? *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 5/13

1/1

0x400e13ab

0xb7e42da0

0xb7e4036d

0x5ea00d00

All would work.

None would work.

Feedback

The strcpy() function would stop the copy process as soon as it encounters a null byte. In
the hexadecimal addresses, each character (after 0x) represents 4 bits (a nibble). Thus,
when we have two consecutive 0's in the hex address, these two characters would
represent a null byte and thus foil our attack.

During a buffer overflow attack using strcpy(), we provide an address in
hex to which we want the execution to jump to. By only seeing them and
not knowing what they contain, which of the following addresses could
we tell would not work in the attack? *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 6/13

2/2

The binary of this file may be very large.

The opcode of this binary may contain that based on which you chose your answer
in the previous question.

Both of the above.

Feedback

The binary may have null bytes. There may be other reasons too, e.g. incorporating
dynamically linked libraries. For these reason, we use shell code to directly inject the
opcode of our exploit program.

Say we want to execute shell in the target machine using the following C
code. A strategy to trigger this in a buffer overflow attack with strcpy()
may be to pass the executable binary of the code in a character array
(say buffer) in the vulnerable program. What may be the reason(s) why
this might not be a good strategy? *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 7/13

1/1

memory

registers

cache

None of the above.

Feedback

The three arguments are taken from the following registers respectively:
$ebx,$ecx,$edx

execve() is a system call taking in 3 arguments. Where does it get those
arguments from? *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 8/13

2/2

Yes

No

Feedback

We should add the instruction that invokes the system call. This is "int $0x80" in assembly,
i.e, "\xcd\x80" in opcode.

Given that injecting the binary of the C code above in the stack is not a
good attack strategy, we decide to inject its machine opcode, as given
below. Is this complete? (The commented code is the assembly
instruction for each opcode instruction, Ref. Prof. Du, Computer
Security) *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a67… 9/13

2/2

1

2

3

4

5

6

7

8

9

10

The above opcode has 10 lines of code, let's say the line no. of the first
instruction is 1. Identify all line(s) that generate a "0". (Select the relevant
line numbers in the opcode listing above). *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a6… 10/13

2/2

1

2

3

4

5

6

7

8

9

10

Feedback

Only choose the push instructions. Note the need to push "0" after pushing "/bin/sh". As all
strings need to be null terminated.

Identify all lines that push "name[0]", the first argument of execve(), into
the stack (refer to the corresponding C code above). (Select the relevant
line number(s) in the opcode listing above). *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a6… 11/13

0/2

1

2

3

4

5

6

7

8

9

10

Correct answer

7

Feedback

After pushing "/bin//sh" into the stack, the contents of the name array are at the top of the
stack, which is pointed to by %esp, which is essentially the address of name array at this
stage. Line 5 then saves this address into the %ebx register. The %ebx register value is
then pushed into the stack in line 7.

Identify all line(s) that push "name", the 2nd argument of execve(), into
the stack (Hint: "name" is the address of the name array). (Select the
relevant line number(s) in the opcode listing above). *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a6… 12/13

0/2

1

2

3

4

5

6

7

8

9

10

Correct answer

9

Identify all line(s) that handle the 3rd argument of execve(), NULL, into
the stack. (Select the relevant line number(s) in the opcode listing
above). *

2/14/2020 Buffer Overflow Attack - Exercise

https://docs.google.com/forms/d/e/1FAIpQLScYGeljlcX6jSwEQL3t8yMR9L9J5SSkqpg2P4pmXQRrNzEORg/viewscore?sid=71c890a6… 13/13

2/2

Put a bunch of Null Characters, at the start of the opcode of our exploit code, while
feeding the opcode to a target array.

Put a bunch of No Operation instructions, at the start of the opcode of our
exploit code, while feeding the opcode to a target array.

Feedback

WIth NOPs preceding the exploit code, we only need to ensure we can jump to any one of
the NOP instructions, in order to execute our code.

This content is neither created nor endorsed by Google. - Terms of Service - Privacy Policy

Since it is difficult to guess the exact starting address of the exploit
code, which we want to execute, which of the following changes do we
make to our shell code? *

 Forms

https://policies.google.com/terms
https://policies.google.com/privacy
https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

