
238P Operating Systems, Fall 2018

xv6 Boot Recap:
Transitioning from 16 bit mode to 32 bit mode

3 November 2018
Aftab Hussain
University of California, Irvine

BIOS xv6 Boot loader

what it does
Sets up the hardware.
Transfers control to the Boot Loader.

BIOS xv6 Boot loader

what it does
Sets up the hardware.
Transfers control to the Boot Loader.

how it transfers control to the Boot Loader
Boot loader is loaded from the 1st 512-byte sector of the boot disk.
This 512-byte sector is known as the boot sector.
Boot loader is loaded at 0x7c00.
Sets processor’s ip register to 0x7c00.

BIOS xv6 Boot loader

2 source source files
bootasm.S - 16 and 32 bit assembly code.
bootmain.c - C code.

BIOS xv6 Boot loader

2 source source files
bootasm.S - 16 and 32 bit assembly code.
bootmain.c - C code.

executing bootasm.S
1. Disable interrupts using cli instruction. (Code).

> Done in case BIOS has initialized any of its interrupt handlers while setting
 up the hardware. Also, BIOS is not running anymore, so better
 to disable them.
> Clear segment registers. Use xor for %ax, and copy it to the rest (Code).

 2. Switch from real mode to protected mode. (References: a, b).
> Note the difference between processor modes and kernel privilege modes
> We do the above switch to increase the size of the memory we can
 address.

https://www.felixcloutier.com/x86/CLI.html
https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L13
https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L15
http://flint.cs.yale.edu/feng/cos/resources/BIOS/procModes.htm
https://www.geek.com/chips/difference-between-real-mode-and-protected-mode-574665/

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.
 2. Switch from real mode to protected mode. Let’s

expand on
this a little

bit

Addressing in Real Mode

In real mode, the processor sends 20-bit addresses to the memory.
(e.g. Intel processors 8086, 8088).

However, it has eight general 16-bit registers + 16 bit segment registers.

How to generate a 20 bit address from a 16 bit register?

https://en.wikipedia.org/wiki/Processor_register

Say processor fetches a data read/write instruction.
The processor would then use the data segment register (%ds).

To pass the 16-bit address obtained from %ds
to the memory (which accepts 20-bit addresses) we left

shift the 16-bit register by 4 bits.

This is equivalent to adding the register
to itself 16 times.

(try it out in a bit calculator - e.g. gnu calculator)

Say processor fetches a data read/write instruction.
The processor would then use the data segment register (%ds).

To pass the 16-bit address obtained from %ds
to the memory (which accepts 20-bit addresses) we left

shift the 16-bit register by 4 bits.

This is equivalent to adding the register
to itself 16 times.

(try it out in a bit calculator - e.g. gnu calculator)

Use ƎƓơƞr ƊiƧdƒ ƎƟ seƆƦƄnƓ ƫƞgiƒƭƄrƒ
foƑ ƎƭhƞƑ ƤinƃƬ Ǝf ƢƍƬtƑuƜtƈƨƍƬ.

For ƄƗƚƦpƋe ƟƎr ƒƭƚcƊ ƫeƀdƒ/ wƑiƭƄs Ʈƒe %sƒ.

So let’s look at how the
address translation process takes place in real mode...

16 bits (from a segment register)

offset

CPU

segment selector
16 bits (from the address register)

Segmentation
in Real Mode

https://en.wikipedia.org/wiki/Memory_address_register#cite_note-1

16 bits

offset

CPU

segment selector
16 bits

logical address
(also known as a

32-bit segment:offset pair)

32 bits

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector
16 bits

logical address
(also known as a

32-bit segment:offset pair)

32 bits

xv6 refers to this x86 logical
address as a virtual address

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector Segment translation
hardware

segment selector

16 bits

offset

16 bits

16 bits

32 bits

logical address
(also known as a

32-bit segment:offset pair)

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector Segment translation
hardware

segment selector

16 bits

offset

segment selector

16 bits

20 bits

left shift
by 4

16 bits

32 bits

logical address
(also known as a

32-bit segment:offset pair)

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector Segment translation
hardware

segment selector

16 bits

offset

segment selector

16 bits

20 bits

left shift
by 4

16 bits add

linear address
20 bits

32 bits

logical address
(also known as a

32-bit segment:offset pair)

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector Segment translation
hardware

segment selector

16 bits

offset

segment selector

16 bits

20 bits

left shift
by 4

16 bits add

linear address
20 bits

32 bits

directly
corresponds to the
physical address

logical address
(also known as a

32-bit segment:offset pair)

Segmentation
in Real Mode

16 bits

offset

CPU

segment selector Segment translation
hardware

segment selector

16 bits

offset

segment selector

16 bits

20 bits

left shift
by 4

16 bits add

linear address
20 bits

32 bits

if ƏƀƠƢnƆ iƬ ƄnƚƁƥed, tƇiƬ
adƃƫƄsƒ ưƨulƃ ƠƎ tƇƫƨugƇ ƀ
fuƑƭhƄƑ ƭrƚƍƬlaƓƈƨƧ pƑoƜƄsƒ

wiƓơƈn Ɠơƞ paƆƈƧg ƇƚƫdƖaƫƄ tƨ
geƍƄƫƚte ƀ ƏơyƒƢƜal ƀƃƝrƞƒƬ

logical address
(also known as a

32-bit segment:offset pair)

Segmentation
in Real Mode

CPU

Segment translation
hardware

linear address

logical address

xv6 configures this hardware
such that logical and linear
addresses are always the

same.

Segmentation
in Real Mode

CPU

Segment translation
hardware

linear address

logical address

xv6 configures this hardware
such that logical and linear
addresses are always the

same.

It ƅoƥlƎƖƬ (wiƓơƎƮt ƏaƠƈnƆ) in
xƕ6,

loƆƈƜƚl aƃƝrƄƒƬ
= liƍƄƚƫ adƃƫƄsƒ

= pƇƲsiƂƀƥ ƚdƃƫesƒ

Segmentation
in Real Mode

Why the switch to Protected Mode?

With the processor being able to send 20 bit linear addresses,
 the maximum size of addressable

memory is 2^20 bytes which is only 1MB.

In Protected Mode, the processor can send 32 bit linear addresses,
which allows us to address a memory of size 4GB.

Paging hardware is also enabled in Protected Mode.

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.
 2. Switch from real mode to protected mode.

> To setup the protected mode, the boot loader sets up the segment
 descriptor table, with three entries. Each entry is
 [a base physical address, max virtual address limit (4GB), permission bits]

Segmentation
in Protected Mode

16 bits 32 bits

logical address

64-bit GDT table

Segmentation
in Protected Mode

16 bits 32 bits

logical address

64-bit GDT table

segment
descriptor

Segmentation
in Protected Mode

16 bits 32 bits

logical address

linear address
32 bits

64-bit GDT table

segment
descriptor

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.

lgdt gdtdesc

gdtdesc:

 .word (gdtdesc - gdt - 1) # sizeof(gdt) - 1

 .long gdt # address gdt

the gdt table

the macros
used are

defined heresetting up segment
descriptor table

https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L80
https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/asm.h#L2

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.

lgdt gdtdesc

gdtdesc:

 .word (gdtdesc - gdt - 1) # sizeof(gdt) - 1

 .long gdt # address gdt

the gdt table

the macros
used are

defined heresetting up segment
descriptor table

Assembly Tip:
All assembler
directives begin with a
period. (Ref.)

https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L80
https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/asm.h#L2
https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.
 2. Switch from real mode to protected mode.

> Now enable protected mode by setting the 1 bit in control register %cr0.
 (Code).

https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L43

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.
 2. Switch from real mode to protected mode.

> To fully enable protected mode, we need to load a new value into %cs.
> Since %cs cannot be modified directly we setup %cs here: (code), which
 results in %cs to refer to the code descriptor entry in gdt.

https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L51

BIOS xv6 Boot loader

2 source source file

executing bootasm.S

m.
 2. Switch from real mode to protected mode.

> To fully enable protected mode, we need to load a new value into %cs.
> Since %cs cannot be modified directly we ljmp (code), which
 results in %cs to refer to the code descriptor entry in gdt (a 32 bit code

seg.)

Assembly Tip:
Long Jump:
ljmp $0xfebc, $0x12345678

Use 0xfebc for the CS register and 0x12345678
for the EIP register. (Ref.)

https://github.com/mit-pdos/xv6-public/blob/b818915f793cd20c5d1e24f668534a9d690f3cc8/bootasm.S#L51
https://docs.oracle.com/cd/E19455-01/806-3773/instructionset-73/index.html

BIOS xv6 Boot loader

2 source source file

m.

We have completed transitioning from 16 bit (real) mode to
32 bit (protected) mode

BIOS xv6 Boot loader

2 source source file

m.

To see details on how the 32 bit addresses are translated
in the segmentation hardware in protected mode look here.

https://en.wikipedia.org/wiki/Protected_mode#Protected_mode

BIOS xv6 Boot loader

2 source source f

The next steps in booting….

- bootasm.S makes necessary initializations to call
bootmain.c, and calls bootmain

- bootmain loads the kernel into memory

thank you !

