
Counting
Semaphores

Discussed on
whiteboard
30 November 2018

Slides Posted
10 December 2018

Aftab Hussain
University of California,
Irvine

238P Operating Systems, Fall 2018

semaphore
an integer variable

binary semaphore
semaphore can be 0 or 1

counting semaphore
semaphore can have any integer value

An array that holds a list of
suspended threads.

An array that holds a list of
suspended threads.

Let’s call it suspended_list

suspended_list

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

Now, for example, we want to run the following code
using multiple threads in parallel where:

suspended_list

Now, for example, we want to run the following code
using multiple threads in parallel where:

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

suspended_list

Now, for example, we want to run the following code
using multiple threads in parallel where:

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

ok to have this code run in
parallel by multiple threads

ok to have this code run in
parallel by multiple threads

only n number of threads
should run this code at a time.

some requirements

suspended_list

Now, for example, we want to run the following code
using multiple threads in parallel where:

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

ok to have this code run in
parallel by multiple threads

ok to have this code run in
parallel by multiple threads

only n number of threads
should run this code at a time.

some requirements

let’s call this the entry code

let’s call this the exit code

suspended_list

Now, for example, we want to run the following code
using multiple threads in parallel where:

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

ok to have this code run in
parallel by multiple threads

ok to have this code run in
parallel by multiple threads

only n number of threads
should run this code at a time.

some requirements

let’s call this the entry code

let’s call this the exit code

this is the key requirement

Let’s use a counting semaphore to fulfill these requirements

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

semaphore
int s;

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

In this example, we can use this semaphore to
count threads (in different ways, as we shall soon
see).
Initial value of s is the number of threads we shall
allow to execute in the critical section at the same
time.

int s;

> Two functions are used to implement a counting semaphore, in order to fulfill the
controlled execution requirement of the critical section code.

> They update the value of the counting semaphore.

> They are by convention named P(s) and V(s). (ref)

> P(s) decreases the value of the semaphore. It is placed in the entry code block.

> V(s) increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

> Two functions are used to implement a counting semaphore, in order to fulfill the
controlled execution requirement of the critical section code.

> They update the value of the counting semaphore.

> They are by convention named P(s) and V(s). (ref)

> P(s) decreases the value of the semaphore. It is placed in the entry code block.

> V(s) increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

> Two functions are used to implement a counting semaphore, in order to fulfill the
controlled execution requirement of the critical section code.

> They update the value of the counting semaphore.

> They are by convention named P() and V(). (ref)

> P(s) decreases the value of the semaphore. It is placed in the entry code block.

> V(s) increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

> Two functions are used to implement a counting semaphore, in order to fulfill the
controlled execution requirement of the critical section code.

> They update the value of the counting semaphore.

> They are by convention named P() and V(). (ref)

> P() decreases the value of the semaphore. It is placed in the entry code block.

> V(s) increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

> Two functions are used to implement a counting semaphore, in order to fulfill the
controlled execution requirement of the critical section code.

> They update the value of the counting semaphore.

> They are by convention named P() and V(). (ref)

> P() decreases the value of the semaphore. It is placed in the entry code block.

> V() increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

t

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

V()
{
 s++;
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

V()
{
 s++;
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

t

Let’s see a running example of how these two
functions can help us control execution of the critical section code.

Say initial value of s is 2.

This means we shall allow two threads to execute
in the critical section simultaneously.

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=2

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=2

T1 Enters function fn()

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes 1
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

s=1

T1

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes 1
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return; //T1 returns
}

s=1

T1 Enters critical section.

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=1

T1

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=1

T2 Enters function fn()

T1

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes 0
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

s=0

T1

T2

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes 0
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return; //T2 returns
}

s=0

T1 Enters critical
section.T2

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T1 T2

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T1 T2

T3 Enters function fn()

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes -1
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

s=-1

T1 T2

T3

T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--; // s becomes -1
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

s=-1

T1 T2

T3

T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=-1 // notice that if s is negative, |s| gives us the number of
 sleeping threads, or threads in suspended_list

T1 T2

So now we have T1 and T2 running in
the critical section.

Say T1 finishes running critical section code.

T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=-1

T1

T2

Leaves critical section.

T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T2

T1

V()
{
 s++; //s becomes 0
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T2

T1

V()
{
 s++; //s becomes 0
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

T
3

T3 is put to a ready state only. It is upto
the OS scheduler to decide whether or
not to let it execute the critical section
immediately.

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T2

T1

V()
{
 s++; //s becomes 0
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

T
3Note:

T1 exits.

Couple of points.

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

V()
{
 s++;
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

The thread picked from suspended_list
can follow any algorithm (e.g. FIFO)

Note:

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

V()
{
 s++;
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

Based on this setup, threads can gain
access to these functions parallely and
update the value of s simultaneously
causing a race on s.

Note:

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
 s--;
 if (s<0)
 {
 put thread t to suspended_list;
 sleep(t);
 }
 else return;
}

V()
{
 s++;
 if (s<=0)
 {
 pick a thread t from
 suspended_list;
 wakeup(t);
 }
 else return;
}

Hence we need to guard these two
functions using locks.

Note:

End of demonstration of how a
counting semaphore may be used.

Refs:
https://en.wikipedia.org/wiki/Semaphore_(programming)

https://www.youtube.com/watch?v=eoGkJWgxurQ //(not in English)

