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semaphore
an integer variable

binary semaphore
semaphore can be 0 or 1

counting semaphore
semaphore can have any integer value



An array that holds a list of 
suspended threads.



An array that holds a list of 
suspended threads.

Let’s call it suspended_list



suspended_list

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

Now, for example, we want to run the following code 
using multiple threads in parallel where:
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suspended_list

Now, for example, we want to run the following code 
using multiple threads in parallel where:

fn()
{

//code preceding critical section
...
...
...

//critical section code
...
...
...

//code following critical section
...
...
...

}

ok to have this code run in 
parallel by multiple threads

ok to have this code run in 
parallel by multiple threads

only n number of threads 
should run this code at a time.

some requirements

let’s call this the entry code 

let’s call this the exit code 

this is the key requirement



Let’s use a counting semaphore to fulfill these requirements



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

semaphore 
int s;



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

In this example, we can use this semaphore to 
count threads (in different ways, as we shall soon 
see).
Initial value of s is the number of threads we shall 
allow to execute in the critical section at the same 
time.  

int s;



> Two functions are used to implement a counting semaphore, in order to fulfill the 
controlled execution requirement of the critical section code. 

> They update the value of the counting semaphore.

> They are by convention named P(s) and V(s). (ref)

> P(s) decreases the value of the semaphore. It is placed in the entry code block.

> V(s) increases the value of the semaphore. It is placed in the exit code block.

https://en.wikipedia.org/wiki/Semaphore_(programming)#Operation_names
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suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--;
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return;
}

V()
{
  s++;
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

t



Let’s see a running example of how these two
functions can help us control execution of the critical section code.



Say initial value of s is 2.



This means we shall allow two threads to execute
in the critical section simultaneously.
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fn()
{

//code preceding critical section

P()
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...
...
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V()

}

P()
{
  s--; // s becomes 1
  if (s<0)
  {
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T1 Enters critical section.



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=1

T1
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fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=1

T2 Enters function fn()

T1



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--; // s becomes 0
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return; 
}

s=0

T1

T2



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--; // s becomes 0
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return; //T2 returns
}

s=0

T1 Enters critical 
section.T2
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fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0

T1 T2

T3 Enters function fn()
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fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--; // s becomes -1
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return; 
}

s=-1

T1 T2

T3



T
3 suspended_list

fn()
{

//code preceding critical section

P()
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...
...
...

//code following critical section

V()

}

P()
{
  s--; // s becomes -1
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return; 
}

s=-1

T1 T2

T3



T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=-1  // notice that if s is negative, |s| gives us the number of
    sleeping threads, or threads in suspended_list

T1 T2



So now we have T1 and T2 running in 
the critical section.



Say T1 finishes running critical section code.



T
3 suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=-1  

T1

T2

Leaves critical section.
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V()

}
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T2
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suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0  

T2

T1

V()
{
  s++; //s becomes 0
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

T
3



T3 is put to a ready state only. It is upto 
the OS scheduler to decide whether or 
not to let it execute the critical section 
immediately. 

suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

s=0  

T2

T1

V()
{
  s++; //s becomes 0
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

T
3Note:



T1 exits.



Couple of points.
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fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--;
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return;
}

V()
{
  s++;
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

The thread picked from suspended_list 
can follow any algorithm (e.g. FIFO)

Note:



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--;
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return;
}

V()
{
  s++;
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

Based on this setup, threads can gain 
access to these functions parallely and 
update the value of s simultaneously 
causing a race on s. 

Note:



suspended_list

fn()
{

//code preceding critical section

P()

//critical section code
...
...
...

//code following critical section

V()

}

P()
{
  s--;
  if (s<0)
  {
    put thread t to suspended_list;
    sleep(t);
  }
  else return;
}

V()
{
  s++;
  if (s<=0)
  {
    pick a thread t from
    suspended_list;
    wakeup(t);
  }
  else return;
}

Hence we need to guard these two 
functions using locks.

Note:



End of demonstration of how a
counting semaphore may be used.



Refs:
https://en.wikipedia.org/wiki/Semaphore_(programming)

https://www.youtube.com/watch?v=eoGkJWgxurQ //(not in English)


