238P Operating Systems, Spring 2019

Topics : Paging and Stacks

13 December 2019
Aftab Hussain
University of California, Irvine

Review of
Address Translation
using Paging

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001

> With paging enabled, xv6 can deal with 32 bit virtual addresses
> Size of the virtual address space is 232 bytes = 4GB

> A page is of size 4KB

> There are ~1 million pages in the virtual address space.

> The pages are mapped to a physical address space,
limited by the physical memory.

> We shall take the help of two tables (2-level tree) to map
from virtual to physical.

> These tables are stored in the physical memory.

Fun note - bits and bytes

https://www.quora.com/Why-does-a-32-bit-address-only-contain-1-byte-when-32-BITS-4-bytes

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809

20983 809 = l 00 0000 0101|00 0000 0011|0000 0000 0001
points to
entry
in the 1st
table
(the PD)

page directory
(1024 entries)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809

20983 809 = l 00 0000 0101|00 0000 0011|0000 0000 0001
points to
entry
in the 1st
table
(the PD)

level 2 page
table

page directory
(1024 entries)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001

points to points to
entry entry
in the 1st in the 2nd
table table
(the PD)

level 2 page
table
(1024 entries)
page directory
(1024 entries)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 0101]00 0000 0011[0000 0000 0001]

points to points to points to

entry entry the actual

in the 1st in the 2nd byte in the
table table page
(the PD) (offset)

page
(4024 bytes)
level 2 page
table
(1024 entries)
page directory

(1024 entries)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001

. J
NS

page number

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001

- J
NS
page number 1M (1,048,575)
Virtual Address
Space (or Memory)
of the Process L
012 page number = 5123

or (Ob1l 0100 0000 0011)
0123456738 9101112

Physical
Memory

Ref. Anton Burtsev, Fall 17, CS 143A Lecture

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 =[00 0000 0101]p0 0000 0011[0000 0000 0001

A\ /
NS

page number 1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

012 page number = 5123
CR3 =0 or (Ob1 0100 0000 0011)

0123456738 9101112

Physical
Memory

A
32 pifs (4 byt&i)
N

/4 A\

L

o, WN KO

1023

Level 1
(Page Table
Directory)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

e ——— |
20 983 809 = [00 0000 010{]00 0000 0011[§000 0000 0001
J

“ >
NS
page number 1M (1,048,575)
Virtual Address
Space (or Memory)
of the Process L
012 page number = 5123
CR3=0 or (Ob1 0100 0000 0011)
0123456 78 9101112
Physical
Memory
'Y
32 bifs (4 bytes)
I\
/7 T

0 0

y 1

2 2

3 3 12

4 4

5 7 2)

6 6

1023 1023
Level 1 Level 2
(Page Table (Page Table)

Directory)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 001§[0000 0000 0001

“ y
NS
page number 1M (1,048,575)
Virtual Address
Space (or Memory)
of the Process L
012 page number = 5123
CR3=0 or (Ob1 0100 0000 0011)
0123456 78 9101112
Physical
Memory
'Y
32 pifs (4 bytes)
I\
/7 T
0 0 0 [55]]
1 1 4
2 2 8
3 3 12 12
4 4 16
5 7 2) 20
6 6 24
1023 1023 4092
Level 1 Level 2 Page
(Page Table (Page Table)

Directory)

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX]= 0

X = 20 983 809

20 983 809 =J/00 0000 010100 0000 001[0000 0000 0001

A\ J
NS

page number 1M (1,048,575)

Virtual Address
Space (or Memory)
of the Process

page number = 5123

CR3=0 or (0b1 0100 0000 0011)
3456 7 8 9101112
Physical
Memory \\
A \
32 pifs (4 bytes)
N\
/4 WY
0 0 5
1 1 4
2 2 8
3 3 12 12
4 4 16
5 7] 20
6 6 24
1023 1023 4092
Level 1 Level 2 Page
(Page Table (Page Table)

Directory)

> Problem 2, from CS238P Fall 2018, Midterm
> Problem 1, from CS238P Winter 2018, Midterm

https://www.ics.uci.edu/~aburtsev/238P/2018fall/lectures/midterm/paper.pdf
https://www.ics.uci.edu/~aburtsev/238P/2018winter/midterm/paper.pdf

Stack

KERNBASE

heap
PAGESIZE ¢ stack
guard page
data
text
0_

argument 0

argument N

0

address of argument 0

address of argument N

address of address of
argument 0

arge

OXFFFFFFF

(empty)

Figure 2-3. Memory layout of a user process with its initial stack.

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

> The stack is populated from the higher to the lower addresses.

> Arguments of function calls occupy the higher addresses of the stack.
> The guard page is unmapped, and is aimed to prevent the stack from growing

beyond the size of the stack (which is 1 page.)

xv6 book, https://pdox.csail. mit.edu/6.828/xv6

> Problems 2 and 3 from CS238P Winter 2018, Midterm
> Problem 3, fromn CS238P Fall 2018, Midterm

https://www.ics.uci.edu/~aburtsev/238P/2018winter/midterm/paper.pdf
https://www.ics.uci.edu/~aburtsev/238P/2018fall/lectures/midterm/paper.pdf

