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Review of
Address Translation
using Paging



mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001




> With paging enabled, xv6 can deal with 32 bit virtual addresses
> Size of the virtual address space is 232 bytes = 4GB

> A page is of size 4KB

> There are ~1 million pages in the virtual address space.

> The pages are mapped to a physical address space,
limited by the physical memory.

> We shall take the help of two tables (2-level tree) to map
from virtual to physical.

> These tables are stored in the physical memory.

Fun note - bits and bytes


https://www.quora.com/Why-does-a-32-bit-address-only-contain-1-byte-when-32-BITS-4-bytes

mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0

EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 0101]00 0000 0011[0000 0000 0001]
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 0011[0000 0000 0001
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 =[00 0000 0101]p0 0000 0011[0000 0000 0001
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX
EAX =0
EBX = 20 983 809

20 983 809 = [00 0000 010100 0000 001§[0000 0000 0001
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mov (%EBX), EAX # mov value from the location pointed by EBX into EAX

EAX]= 0

X = 20 983 809

20 983 809 =J/00 0000 010100 0000 001[0000 0000 0001
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> Problem 2, from CS238P Fall 2018, Midterm
> Problem 1, from CS238P Winter 2018, Midterm



https://www.ics.uci.edu/~aburtsev/238P/2018fall/lectures/midterm/paper.pdf
https://www.ics.uci.edu/~aburtsev/238P/2018winter/midterm/paper.pdf

Stack



KERNBASE

heap
PAGESIZE ¢ stack
guard page
data
text
0_

argument 0

argument N

0

address of argument 0

address of argument N

address of address of
argument 0

arge
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(empty)

Figure 2-3. Memory layout of a user process with its initial stack.

nul-terminated string
argv[argc]

argv[0]

argv argument of main

argc argument of main
return PC for main

> The stack is populated from the higher to the lower addresses.

> Arguments of function calls occupy the higher addresses of the stack.
> The guard page is unmapped, and is aimed to prevent the stack from growing

beyond the size of the stack (which is 1 page.)

xv6 book, https://pdox.csail. mit.edu/6.828/xv6



> Problems 2 and 3 from CS238P Winter 2018, Midterm
> Problem 3, fromn CS238P Fall 2018, Midterm



https://www.ics.uci.edu/~aburtsev/238P/2018winter/midterm/paper.pdf
https://www.ics.uci.edu/~aburtsev/238P/2018fall/lectures/midterm/paper.pdf

