
CS 238P Name (Print):

Winter 2018
Midterm
02/20/2018
Time Limit: 3:30pm - 4:50am

• Don’t forget to write your name on this exam.

• This is an open book, open notes exam. But no online or in-class chatting.

• Ask us if you something is confusing in the questions.

• Organize your work, in a reasonably neat and coherent way, in the space provided. Work
scattered all over the page without a clear ordering will receive very little credit.

• Mysterious or unsupported answers will not receive full credit. A correct answer,
unsupported by explanation will receive no credit; an incorrect answer supported by substan-
tially correct explanations might still receive partial credit.

• If you need more space, use the back of the pages; clearly indicate when you have done this.

Problem Points Score

1 10

2 10

3 5

4 10

5 5

6 5

Total: 45

CS 238P Midterm - Page 2 of 11

1. Basic page tables.

Consider the following 32-bit x86 page table setup.

%cr3 holds 0x00000000.

The Page Directory Page at physical address 0x00000000:

PDE 0: PPN=0x00001, PTE_P, PTE_U, PTE_W

PDE 1: PPN=0x00002, PTE_P, PTE_U, PTE_W

PDE 2: PPN=0x00001, PTE_P, PTE_U, PTE_W

... all other PDEs are zero

The Page Table Page at physical address 0x00001000 (which is PPN 0x00001):

PTE 0: PPN=0x00003, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00004, PTE_P, PTE_U, PTE_W

... all other PTEs are zero The Page Table Page at physical address 0x00002000:

PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W

PTE 1: PPN=0x00004, PTE_P, PTE_U, PTE_W

... all other PTEs are zero

(a) (5 points) What are all virtual addresses mapped by this page table?

Solution.

https://aftabhussain.github.io/documents/teaching/uci/cs238p/spring2019/cs238p-winter18-
midterm-sol-q1.pdf

(b) (5 points) What is the virtual address of the page table directory? Solution. None,
we have not mapped any virtual address to 0x0, the physical address of the page table
directory.

CS 238P Midterm - Page 3 of 11

2. Stack and calling conventions.

Alice developed a program that has a function foo() that is called from two other functions
bar() and baz():

int foo(int a) {

...

}

int bar(int a, int b) {

...

foo(...);

...

}

int baz(int a, int b, int c) {

...

foo(...);

...

}

While debugging her program Alice observes the following state after pausing execution of the
program inside foo() (assume that the compiler does not inline invocations of foo(), bar(),
and baz():

The bottom of the stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074

0x8010b5b0: 0x00000002

0x8010b5ac: 0x00000001

0x8010b5a8 0x80102e80

0x8010b5a4: 0x8010b5b8

0x8010b5a0: 0x80112780

0x8010b59c: 0x00000001

0x8010b598: 0x80102e32

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

(a) (5 points) Provide a short explanation for each line of the stack dump above (you can
annotate the printout above).

Solution. The key is to follow the frame pointers, and infer which function’s info is being
stored between them by looking at the size of the allocations between each frame pointer.

The bottom of the stack:

0x8010b5b8: ...

0x8010b5b4: 0x00010074 <-- 3rd argument, c

0x8010b5b0: 0x00000002 <-- 2nd argument, b

0x8010b5ac: 0x00000001 <-- 1st argument, a

CS 238P Midterm - Page 4 of 11

0x8010b5a8 0x80102e80 <-- return address of baz

0x8010b5a4: 0x8010b5b8 <-- ebp

0x8010b5a0: 0x80112780 <-- 2nd argument, b

0x8010b59c: 0x00000001 <-- 1st argument, a

0x8010b598: 0x80102e32 <-- return address of bar

0x8010b594: 0x8010b5a4 <-- ebp

0x8010b590: 0x00000000 <-- esp

CS 238P Midterm - Page 5 of 11

(b) (5 points) Can Alice make a conclusion if foo() is called from the context of bar() or baz()
(explain your answer)?

Solution. No. There is no frame pointer showing that foo has been called. The sizes of the
two frames determined from the stack can only correspond to the functions bar (2 args
and 1 return address) and baz (3 args and 1 return address).

CS 238P Midterm - Page 6 of 11

3. Process organization.

(a) (5 points) xv6 processes have the following memory layout created as part of the exec()

function. First, the kernel allocates pages for the kernel text and data (not that these
pages are both executable and writable). Then xv6 allocates two pages: stack and guard.
The guard page is made is placed between the stack and the rest of the program to make
sure that if the stack overflows the operating system can catch an exception caused by the
access to the guard page and terminate the program early.

Alice thinks that the guard page mechanism is bulletproof, i.e., there is no way for a C
program to overflow the stack and start overwriting the program text and data. Is she
right, i.e., is it possible to write a C program that escapes the guard page mechanism and
accidentally overwrites the text section of the program (provide an example).

Solution. Yes, it is possible to write a C program that escapes the guard page mechanism.
If a C program has a local variable that is of size greater than 2 pages, we would skip the
guard page and overwrite the text and data section.

CS 238P Midterm - Page 7 of 11

4. Physical and virtual memory allocation

(a) (5 points) Xv6 uses 234MB of physical memory. But how does it keep track of available
physical memory? Specifically, explain the following: the xv6 memory allocator (kalloc())
always returns a virtual address, but how does the allocator know which physical page to
use for each virtual address it allocates?

Solution. Initially kinit1() constructs a linked-list of 4KB pages in the (end,P2V(4MB))
range with the initial pagetable. Once the new pagetable is initialized, kinit2() constructs
a linked-list of 4KB pages from (P2V(4MB), P2V(PHYSTOP)). Each virtual page(4KB)
in the range is linearly mapped to a physical page and is arranged in a chain like fashion
to create a freelist of pages. Kalloc() takes a virtual page from the freelist and returns it
to the caller.

(b) (5 points) Xv6 defines the V2P() macro that allows the kernel to convert between virtual
and physical addresses:

#define V2P(a) (((uint) (a)) - KERNBASE)

Does V2P() macro work for virtual addresses that belong to the user part of the address
space (i.e., a virtual address inside the user data or stack)? Explain your answer.

Solution. (a - KERNBASE) would give a negative address and wrap around to a high
address in the physical memory and that may/may not be the correct physical address for
that virtual page. In order to for the user to access virtual addresses, we need to walk the
pagedir of the process to find out the physical address of the corresponding virtual page

CS 238P Midterm - Page 8 of 11

5. Exec and fork

(a) (5 points) Heres a program that uses the UNIX system call API, as described in Chapter
0 of the xv6 book:

#include "param.h"

#include "types.h"

#include "user.h"

#include "syscall.h"

int main() {

char * message = "aaa\n";

int pid = fork();

if(pid != 0){

char *echoargv[] = { "echo", "Hello\n", 0 };

message = "bbb\n";

exec("echo", echoargv);

}

write(1, message, 4);

exit();

}

Assume that fork() succeeds, that file descriptor 1 is connected to the terminal when the
program starts, and echo program exists. What output this program produces (explain
your answer)?

“aaa” “Hello” or “Hello” “aaa”. After fork, either the parent or the child runs first (no
defined ordering).

CS 238P Midterm - Page 9 of 11

6. Initial page tables

Bob looks at the piece of code in entry.S where the initial page tables are set and thinks
he doesn’t need the entry that maps the 0-4MB of virtual page to 0-4MB of physical page.
Accordingly he modifies the entrypgdir as below.

__attribute__((__aligned__(PGSIZE)))

pde_t entrypgdir[NPDENTRIES] = {

// Map VA’s [KERNBASE, KERNBASE+4MB) to PA’s [0, 4MB)

[KERNBASE>>PDXSHIFT] = (0) | PTE_P | PTE_W | PTE_PS,

};

(a) (5 points) Explain whether Bob’s change will work?

Solution. No. If the 0-4 MB mapping is removed, the kernel will not boot as the remaining
few instructions of entry.S are still in the 0-4 MB physical/virtual range.

CS 238P Midterm - Page 10 of 11

CS 238P Midterm - Page 11 of 11

