
Using C, unrolling the loop 4 times:

for (i = 0 ; i< 25; i+=4) {
a[i] = b[i]*c[i];
a[i+1]=b[i+1]+c[i+1];
a[i+2]=b[i+2]+c[i+2];
a[i+3]=b[i+3]+c[i+3];

}

Winter 2019 CS 250P Midterm - Question 4 Solution

Instr1

Winter 2019 CS 250P Midterm - Question 5 Solution

IM RW|RR ALU DM RW|RR

IM RW|RR ALU DM RW|RR

L1 L2 L3 L4 L5 L6

L1 L2 L3 L4 L5 L6

1 2 3 4 5 6

Instr2

Cycle

Part a) Integer addition followed by a dependent integer addition

● Example assembly code:
Instr1: R1 <- R2 + R3
Instr2: R4 <- R1 + R5

● Finding number of stalls required without bypassing:

Instr1: R1 value is produced in cycle 5 (written on register).
Instr2: R1 value is consumed in cycle 3 (read from register).
Thus, we need two stalls.

● Finding number of stalls required with bypassing (can use latch values):
Instr1: R1 value is available in Latch 4, end of cycle 3.
Instr2: R1 value is used in beginning of cycle 4.
Thus, we need zero stalls.

Instr1

Winter 2019 CS 250P Midterm - Question 5 Solution

IM RW|RR ALU DM RW|RR

IM RW|RR ALU DM RW|RR

L1 L2 L3 L4 L5 L6

L1 L2 L3 L4 L5 L6

1 2 3 4 5 6

Part b) Load, providing the address for a store

● Example assembly code:
Instr1: LD R1 <- [R2]
Instr2: ST R3 -> [R1]

● Finding number of stalls required without bypassing:

Instr1: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.

● Finding number of stalls required with bypassing (can use latch values):
Instr1: R1 value is available in Latch 5, end of cycle 4.
Instr2: R1 value is used to store it in address in R3 in beginning of cycle 5.
Thus, we need 1 stall.

Instr2

Cycle

Instr1

Winter 2019 CS 250P Midterm - Question 5 Solution

IM RW|RR ALU DM RW|RR

IM RW|RR ALU DM RW|RR

L1 L2 L3 L4 L5 L6

L1 L2 L3 L4 L5 L6

1 2 3 4 5 6

Part c) Load, providing the data for a store

● Example assembly code:
Instr1: LD R1 <- [R2]
Instr2: ST R1 -> [R3]

● Finding number of stalls required without bypassing:

Instr1: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.

● Finding number of stalls required with bypassing (can use latch values):
Instr1: R1 value is available in Latch 5, end of cycle 4.
Instr2: R1 value is used to store it in address in R3 in beginning of cycle 5.
Thus, we need zero stalls.

Instr2

Cycle

Instr1

Winter 2019 CS 250P Midterm - Question 5 Solution

IM RW|RR ALU DM RW|RR

IM RW|RR ALU DM RW|RR

L1 L2 L3 L4 L5 L6

L1 L2 L3 L4 L5 L6

1 2 3 4 5 6

Part d) Integer addition providing the address for the store

● Example assembly code:
Instr1: R1 <- R2 + R3
Instr2: ST R3 -> [R1]

● Finding number of stalls required without bypassing:

Instr1: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.

● Finding number of stalls required with bypassing (can use latch values):
Instr1: R1 value is available in Latch 4, end of cycle 3.
Instr2: R1 value is used in beginning of cycle 5.
Thus, we need zero stalls.

Instr2

Cycle

int a [] = { 1, 0, 1, 0, 0 };

while (1) {
for (i = 0; i< 5; i++) { //BR1

if (a[i]==0) { //BR2
…

}
}

}

2-bit counter states:

0 1 2 3

T T T

N N N

N T

N - Branch not taken
T - Branch taken
0 - Strongly not taken
1 - Weakly not taken
2 - Weakly taken
3 - Strongly taken

❏ The above program has 2 branches BR1
and BR2 (highlighted).

❏ Each branch has a 2-bit counter.
❏ Counters are initialized to 0.
❏ First get steady state values of each

counter, by running the program for a
large number of iterations (a pattern will
appear).

❏ From a quick run down on the execution
table (right), we see steady values of the
BR1’s and BR2’s counters at the beginning
of each set of for loop iterations (i.e. the
number of times the for loop branch
executes in a single while loop) are 2 and 3
respectively (or 10 and 11 respectively in
binary.)

❏ At steady state, let’s now run our for loop
for another set of iterations, with steady
state values of 2 and 3 for BR1 and BR2
respectively, we get:

For Loop
Iteratn. #

[BR1 Taken/Not
Taken, BR 1

Counter value]

[BR2 Taken/Not
Taken, BR 2

Counter value]

1 [T,1] [N,0]

2 [T,2] [T,1]

3 [T,3] [N,0]

4 [T,3] [T,1]

5 [T,3] [T,2]

6 [N,2] [-,2]

7 [T,3] [N,1]

8 [T,3] [T,2]

9 [T,3] [N,1]

10 [T,3] [T,2]

11 [T,3] [T,3]

12 [N,2] [-,3]

13 [T,3] [N,2]

14 [T,3] [T,3]

15 [T,3] [N,2]

16 [T,3] [T,3]

17 [T,3] [T,3]

18 [N,2] [-,3]

...

fo
r l

oo
p

ite
ra

tio
n

se
t 1

fo
r l

oo
p

ite
ra

tio
n

se
t 2

fo
r l

oo
p

ite
ra

tio
n

se
t 3

For Loop
Iteratn. #

[BR1
Taken/Not
Taken, BR
1 Counter

value] after
iteration

BR1
Prediction

[BR2
Taken/Not
Taken, BR
2 Counter

value] after
iteration

BR2
Prediction

1 [T,3] correct [N,2] mispredict

2 [T,3] correct [T,3] correct

3 [T,3] correct [N,2] mispredict

4 [T,3] correct [T,3] correct

5 [T,3] correct [T,3] correct

6 [N,2] mispredict [-,3] -

❏ 11 branches were executed, with 8 correct
predictions and 3 mispredictions. So
success rate out of 10 branches is
(8/11)*10 = 7.27.

Winter 2019 CS 250P Midterm - Question 6 Solution

 Part a)

 Part b)

❏ Explain local predictor. (Rajeev’s slides)

References:

http://www.cs.utah.edu/~rajeev/cs6810/

https://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-mic

roprocessors

http://www.cs.utah.edu/~rajeev/cs6810/
https://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-microprocessors
https://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-microprocessors

