‘Winter 2019 CS 250P Midterm - Question 4 Solution

Using C, unrolling the loop 4 times:

for (i = 0 ; i< 25; 1+=4) {

ali] = bli]l*cli];

ali+l]=b[i+1]+c[1+1];
ali+2]=b[i+2]+c[i+2];
ali+3]=b[i+3]+c[1+3];

Winter 2019 CS 250P Midterm - Question 5 Solution

Cycle : 1 : 2 : 3 : 4 : 5 : 6
L1 L2 L3 L4 L5 L6
Instr1 Mmoo || rRwrr [1] AW oM ||| RwrR >
@
L1 L2 L3 L4 L5
Instr2 : > M RWRR | | | AL oM ||| RwRR
[J

Part a) Integer addition followed by a dependent integer addition

. Example assembly code:
Instr1: R1 <-R2 +R3
Instr2: R4 <- R1 + R5

° Finding number of stalls required without bypassing;
Instr1: R1 value is produced in cycle 5 (written on register).
Instr2: R1 value is consumed in cycle 3 (read from register).
Thus, we need two stalls.

. Finding number of stalls required with bypassing (can use latch values):
Instrl: R1 value is available in Latch 4, end of cycle 3.
Instr2: R1 value is used in beginning of cycle 4.
Thus, we need zero stalls.

Winter 2019 CS 250P Midterm - Question 5 Solution

Cycle 1 2 3 4 5

6
L1 L2 L3 L4 L5 L6
Instr1 M RWIRR ALU DM RW|RR >
L1 L2 L3 L4 L5
Instr2 : > M RW|RR au [| om [1]| RWRR

L6

Part b) Load, providing the address for a store

. Example assembly code:
Instrl: LD R1 <- [R2]
Instr2: ST R3 -> [R1]

° Finding number of stalls required without bypassing;
Instrl: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.

. Finding number of stalls required with bypassing (can use latch values):
Instrl: R1 value is available in Latch 5, end of cycle 4.
Instr2: R1 value is used to store it in address in R3 in beginning of cycle 5.
Thus, we need 1 stall.

Winter 2019 CS 250P Midterm - Question 5 Solution

Cycle 1 2 3 4

L6

5 6
L1 L2 L3 L4 L5 L6
Instr1 M : : RWIRR : : ALU : : DM RW|RR >
o
L1 L2 L3 L4 L5
Instr2 > M RWRR | | | AL DM RW|RR
; o
Part c) Load, providing the data for a store
. Example assembly code:
Instrl: LD R1 <- [R2]
Instr2: ST R1 -> [R3]
° Finding number of stalls required without bypassing;
Instrl: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.
. Finding number of stalls required with bypassing (can use latch values):

Instrl: R1 value is available in Latch 5, end of cycle 4.

Instr2: R1 value is used to store it in address in R3 in beginning of cycle 5.

Thus, we need zero stalls.

Winter 2019 CS 250P Midterm - Question 5 Solution

Cycle 1 2 3 4

L6

5 6
L1 L2 L3 L4 L5 L6
Instr1 M : : RWIRR : : ALU DM : RW|RR >
o
L1 L2 L3 L4 L5
Instr2 > M RWRR | | | AL DM RW|RR
; o
Part d) Integer addition providing the address for the store
. Example assembly code:
Instr1: R1 <-R2 +R3
Instr2: ST R3 -> [R1]
° Finding number of stalls required without bypassing;
Instrl: R1 value is produced in cycle 5.
Instr2: R1 value is consumed in cycle 3.
Thus, we need two stalls.
. Finding number of stalls required with bypassing (can use latch values):

Instrl: R1 value is available in Latch 4, end of cycle 3.
Instr2: R1 value is used in beginning of cycle 5.
Thus, we need zero stalls.

‘Winter 2019 CS 250P Midterm - Question 6 Solution

Parta)
2-bit counter states:

N - Branch not taken
T - Branch taken

N ° ’ a ° T 0 - Strongly not taken
1 - Weakly not taken
2 - Weakly taken
3 - Strongly taken

inta []1={1, 0,1, 0, 0 };
while (1) { For Loop [BR1 Taken/Not | [BR2 Taken/Not
for (i = 0; i< 5; i++) {//BRI1 lteratn. # Taken, BR 1 Taken, BR 2
if (al[i]==0) { //BR2 ’ Counter value] = Counter value]
} '— 1 [T.A] [N,0]
}) 2 2] 1]
a® 3 [T.3] [N,0]
[o]

a The above program has 2 branches BR1 S5 4 [T.3] [T1]
and BR2 (highlighted). K] 3 — —

a Each branch has a 2-bit counter. 2 (T3] [r.2]

a Counters are initialized to 0. 6 IN.2] [-2]

J First get steady state values of each — 7 [T.3] N
counter, by rum?ing Fhe program for‘a 2 T3] 2]
large number of iterations (a pattern will %

o 9 T,3 N,1
appear). g [T.3] [N, 1]
5% 10 T3] r2l

a From a quick run down on the execution T & 1 T3] T3]
table (right), we see steady values of the ' !
BR1’s and BR2’s counters at the beginning L 12 IN.2] 3]
of each set of for loop iterations (i.e. the '— 13 [T,3] [N,2]
number 'of tlmes the? for loop branch - 14 T3l (T.3]
executes in a single while loop) are 2 and 3 b

. . . o 15 T,3 N,2
r(?spectlvely (or 10 and 11 respectively in S g (7.3] (N.2]
binary.) 5% 16 [T,3] [T.3]

) 2 17 [T,3] [T.3]

a At steady state, let's now run our for loop
for another set of iterations, with steady L 18 [N,2] [-,3]
state values of 2 and 3 for BR1 and BR2
respectively, we get:

[BR1 [BR2 Partb)
Taken/Not Taken/Not
ForLoop @ Taken, BR BR1 Taken, BR BR2 . . o,
lteratn.# | 1 Counter = Prediction 2 Counter | Prediction 4 Explain local predictor. (Rajeev's slides)
value] after value] after
iteration iteration
1 [T,3] correct IN,2] mispredict
2 [T.,3] correct [T,3] correct
3 [T,3] correct IN,2] mispredict
4 [T.,3] correct [T.,3] correct
5 [T,3] correct [T,3] correct
6 IN,2] mispredict [-,3] -
a 11 branches were executed, with 8 correct
L X L. References:
predictions and 3 mispredictions. So hitp://www.cs.utah.edu/~rajeev/cs6810/
success rate out of 10 branches is hitps://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-mic

£8/1 1)*10 =7.27. roprocessors

http://www.cs.utah.edu/~rajeev/cs6810/
https://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-microprocessors
https://www.quora.com/CPUs-How-is-branch-prediction-implemented-in-microprocessors

